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Albert Ruiz, Universitat Autònoma de Barcelona (topology)
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Resum (CAT)
Aquest article estudia el càlcul de les sortides planes mitjançant la forma normal

de Goursat del sistema de Pfa↵ associat a qualsevol sistema de control en variables

d’estat. L’algorisme consta de tres passos: i) transformació del sistema de

control en el seu sistema de Pfa↵ equivalent; ii) càlcul de la forma normal de

Goursat; iii) reescriptura de les equacions en les noves variables d’estat. Aqúı, una

realimentació simplifica les equacions i, per tant, les sortides planes es calculen de

manera senzilla. L’algorisme s’aplica a un vehicle amb rodes extensibles. Gràcies a

la propietat de planitud diferencial, s’obtenen les trajectòries entre dos punts donats.

Abstract (ENG)
This paper is devoted to computation of flat outputs by means of the Goursat

normal form of the Pfa�an system associated to any control system in state space

form. The algorithm consists of three steps: i) transformation of the system into

its Pfa�an equivalent; ii) computation of the Goursat normal form; iii) rewriting of

the state space equations in the new variables. Here, a feedback law simplifies the

equations and, therefore, the flat outputs can be easily computed. The algorithm

is applied to a car with expanding wheels. Point to point trajectories are obtained

thanks to the property of di↵erential flatness.
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On computing flat outputs through Goursat normal form

1. Introduction

Since 1980, the problem of feedback linearization for nonlinear control systems has been considered by
di↵erent authors in several frameworks. Di↵erent routes to linearization have been traced; namely, lin-
earization by static feedback; linearization by prolongations; linearization by dynamic feedback, and finally
flatness. The main mathematical tool to study these problems is di↵erential geometry. Notions such as
Lie brackets and involutive fields or distributions, which can be found in basic books of nonlinear control
theory [9, 14], have been followed by di↵erential forms and Pfa�an systems [3, 15].

Di↵erential flatness was introduced in the 90’s by Michel Fliess and coworkers [5]. A di↵erentially
flat nonlinear system can perform any point-to-point desired trajectory. Other systems do not hold this
property. Di↵erentially flat systems are dinamically feedback equivalents to linear systems based on chains
of integrators. Initial and final conditions are transferred, through di↵eomorphism, to the equivalent linear
system where the required inputs are designed. Inputs of the nonlinear system are obtained by application
of the di↵eomorphism and the feedback law.

Unfortunately, necessary and su�cient conditions to check flatness for a general nonlinear system do
not exist. Since mid nineties, extensive work has been done in this direction, but only some particular cases
have been solved [6, 11, 12].

Control systems are usually presented in state space form. In this paper, we convert state space form
control systems into their equivalent Pfa�an systems [3, 15]. A Pfa�an system consists in a set of
independent one forms. These one forms are written in the Goursat normal form which, when transformed
again in state space equations, become very simple equations by addition of a feedback law and, hence,
allow to find the flat outputs in an easily manner.

This paper is organized as follows: Section 2 contains a summary on how to compute Goursat normal
forms for a set of independent one forms, as well as a brief introduction to nonlinear control systems. In
Section 3 the relationship between control systems in state space form and its equivalent Pfa�an system
is explained. The main contribution of this paper is the link between the Goursat normal form and the
computation of the flat outputs. The inclusion of a feedback law plays a crucial role in this sense. Details on
how to compute the flat outputs once the Goursat normal form is achieved are also explained. Section 4 is
devoted to illustrate the whole process through an example, which corresponds to a system with expanding
wheels [1]. Simulations are given in Section 5, where an additional control law is applied to overcome errors
in the initial conditions. The paper ends with the conclusions. A reduced version of this paper has been
accepted for publication at European Control Conference 2014 [7].

2. Background

2.1 Normal form for di↵erential one forms

This section provides a very brief summary on how to compute normal forms for di↵erential one forms. A
detailed approach can be found, for example, in [3, 15]. In the sequel, all the vector fields an di↵erential
forms are supposed to be C1.

Definition 2.1. A system of the form

↵1 = ↵2 = · · · = ↵s = 0,
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where the ↵i are independent 1-forms on an n-dimensional manifold, is called a Pfa�an system.

Definition 2.2. A smooth codistribution smoothly associates a subspace of the cotangent space at each
point p 2 M.

Definition 2.3. The sequence of decreasing codistributions

I (k) ⇢ I (k�1) ⇢ · · · ⇢ I (1) ⇢ I (0)

is called the derived flag of I (0), where

I (k+1) = {� 2 I (k) : d� ⌘ 0 mod I (k)}.

Definition 2.4. Let ↵ 2 ⌦1(M). The integer r defined by (d↵)r ^ ↵ 6= 0 and (d↵)r+1 ^ ↵ = 0 is called
rank of ↵.

We are interested in transforming the generators of Pfa�an systems into a normal form by means of a
coordinate transformation. Let us study first Pfa�an systems of codimension 1, or systems consisting of
a single equation ↵ = 0. The following theorem allows us, under a rank condition, to write ↵ in a normal
form.

Theorem 2.5 (Pfa↵ Theorem). Let ↵ 2 ⌦1(M) have constant rank r in a neighborhood of p. Then,
there exists a coordinate chart (U, z) such that, in these coordinates,

↵ = dz1 + z2dz3 + · · ·+ z2rdz2r+1.

The proof is constructive and is based on finding functions f1, ... , fr+1 and g1, ... , gr (2r +1 < n, where
dimM = n) such that

(d↵)r ^ ↵ ^ df1 = 0,

(d↵)r�1 ^ ↵ ^ df1 ^ df2 = 0,

up to fr ,

d↵ ^ ↵ ^ df1 ^ df2 ^ · · · ^ dfr = 0,

↵ ^ df1 ^ df2 ^ · · · ^ dfr 6= 0,

so that,
↵ = dfr+1 + g1df1 + · · ·+ grdfr .

A new set of variables, di↵eomorphic to the state space variables, is defined as follows:

z1 = fr+1, z2i = gi , z2i+1 = fi ,

with 1  i  r .

For Pfa�an systems of codimension two, a particular case is given by Pfa�an system with four variables.
The algorithm to transform the one forms into a canonical form is obtained in Engel’s theorem:

Theorem 2.6 (Engel’s Theorem). Let I be a dimension two codistribution, spanned by I = h↵1,↵2i of
four variables. Setting I (0) = I , if the derived flag satisfies

dim I (1) = 1,

dim I (2) = 0,

then there exist coordinates z1, z2, z3, z4 such that

I = {dz4 � z3dz1, dz3 � z2dz1}.

3Reports@SCM 1 (2014), 1–13; DOI:10.2436/20.2002.02.1.
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The proof is also constructive and uses the previous theorem.

Engel’s theorem can be generalized to a system with n configuration variables and n � 2 constraints.
The following theorem states the conditions required in order to convert a Pfa�an system into its Goursat
normal form.

Theorem 2.7 (Goursat Normal Form). Let I be a Pfa�an system spanned by s 1-forms, I = {↵1, ... ,↵s},
on a space of dimension n = s + 2, such that

d↵s 6⌘ 0 mod I .

Assume also that there exists an exact form ⇡, with ⇡ 6= 0 mod I , satisfying the Goursat congruences

d↵i ⌘ �↵i+1 ^ ⇡ mod ↵1, ... ,↵i , 1  i  s � 1.

Then there exists a coordinate system z1, z2, ... , zn in which the Pfa�an system is in Goursat normal form,

I = {dz3 � z2dz1, dz4 � z3dz1, ... , dzn � zn�1dz1}.

Finally, in order to study Pfa�an systems of codimension greater than two, we will use the extended
Goursat normal form. That is, a Pfa�an system of codimension m + 1 and generated by n constraints of
the form

I = {dz ji � z ji�1dz0 : i = 1, ... , sj ; j = 1, ... ,m}.
Conditions to convert a Pfa�an system into the extended Goursat normal form are given in the following
theorem:

Theorem 2.8 (Extended Goursat Normal Form). Let I be a Pfa�an system of codimension m + 1 in
Rn+m+1. The system can be put into the extended Goursat normal form if, and only if, there exists a set
of generators {↵j

i : i = 1, ... , sj ; j = 1, ... ,m} for I and an exact one-form ⇡ such that, for all j ,

d↵j
i ⌘ �↵j

i+1 ^ ⇡ mod I (sj�i), i = 1, ... , sj � 1,

d↵j
i 6⌘ 0 mod I .

All the proofs of these theorems are constructive and are outlined in [3, 15].

2.2 Feedback linearization of control systems

Definition 2.9. A nonlinear control system

ẋ = f (x) +
m
X

i=1

gi (x)ui x 2 Rn (1)

is said to be static feedback linearizable if it is possible to find a feedback

u = ↵(z) + �(z)v , u 2 Rm, v 2 Rm, z 2 Rn,

and a local di↵eomorphism
z = �(x)

such that the original system is transformed into a linear controllable system

ż = Az + Bv ,

where A and B are matrices of appropriate size.
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Necessary and su�cient conditions to check static feedback linearization were given in [8, 10]. A
generalization of the static feedback linearization is a dynamic feedback transformation [4].

Definition 2.10. A nonlinear system

ẋ = f (x , u), x 2 Rn, u 2 Rm, (2)

is said to be dynamic feedback linearizable if there exists:

1. A regular dynamic compensator
⇢

ż = a(x , z , v)
u = b(x , z , v)

(3)

with z 2 Rq and v 2 Rm. The regularity assumption implies the invertibility of (3) with input v and
output u.

2. A local di↵eomorphism
 =  (x , z) (4)

with  2 Rn+q, such that the original system (2) with the dynamic compensator (3), after apply-
ing (4), becomes a constant linear controllable system:

 ̇ = A + BV .

A system is dynamic feedback linearizable if, and only if, it is di↵erentially flat. Di↵erential flatness
was introduced by M. Fliess and coworkers in [5].

Definition 2.11. Let (1) be a nonlinear system withm inputs. Roughly speaking, this system is di↵erentially
flat if there exist m functions (y1, ... , ym), equal in number to the number of inputs, such that:

1. Each variable yi is a function of the states, the inputs, and a finite number of the inputs derivatives.

2. The states and the inputs can be expressed as functions of the variables (y1, ... , ym) and their
derivatives up to a certain order.

The variables (y1, ... , ym) are called flat outputs.

The relationship between Goursat normal form of Pfa�an systems and nonholonomic [13] control
systems in state space form is as follows. Given a two input driftless system

ẋ = g1u1 + g2u2, x 2 Rn,

in state space form, its equivalent Pfa�an system can be obtained by finding n � 2 one forms ↵i , such
that ↵iyg1 = 0 and ↵iyg2 = 0 for all i = 1, ... , n � 2.

By applying one of the above theorems, the Goursat normal form can be found. As explained above,
this includes the definition of a new set of state variables z1, ... , zn. The dynamics associated to the system
in these new variables is got by di↵erentiation of each of these variables, which leads to

ż = g1(z)u1 + g2(z)u2.

5Reports@SCM 1 (2014), 1–13; DOI:10.2436/20.2002.02.1.
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Finally, the above system can be expressed as

ż1 = u1,
ż2 = u2,
ż3 = z2u1,

...
żn = zn�1u1,

(5)

by application of a feedback law. A similar algorithm can be applied to any nonholonomic system. The
structure of system (5) is very convenient in order to find the flat outputs.

3. Algorithm to find flat outputs

Consider the system given by

ẋ =
m
X

i=1

giui , x 2 Rn,

where m is the number of controls and n the dimension of state space.

First of all, an equivalent formulation of the system in di↵erential forms will be given. In order to
achieve this goal, n � m di↵erential forms that annihilate the control vector fields must be found. Then,
the Pfa�an system consists in n �m equations:

!1 = !2 = ... = !n�m = 0,

where !i 2 hg1, ... , gmi?, i = 1, ... , n�m. Given a Pfa�an system in Rn+m+1, where n = n+m+1 and
m = m + 1 is the transforming system codimension, these forms are expressed in their extended Goursat
canonical form

I = {!j
i = dz ji � z ji+1dz0 : i = 1, ... , sj , j = 1, ... ,m},

where sj satisfies that n = m + 1 +
Pm

j=1 sj .

At this point, the goal is to rewrite the system using vector fields. In order to do this, we must find
m + 1 vector fields that vanish on the ideal of forms, i.e., vector fields expressed in a generic form for
k = 0, ... ,m as

gk =
�

a0, a
1
1, ... , a

1
s1 , a

1
s1+1, ... , a

m
1 , ... , a

m
sm , a

m
sm+1

�

meeting the following conditions:

gky

8

>

>

>

>

<

>

>

>

>

:

dz j1 � z j2 dz0
dz j2 � z j3 dz0

...

dz jsj � z jsj+1 dz0

9

>

>

>

>

=

>

>

>

>

;

= 0, j = 1, ... ,m.

A possible solution is g0 such that:
a0 = 1

aj1 = z j2
...

ajsj = z jsj+1

ajsj+1 = 0

http://reportsascm.iec.cat6
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and

g j =
@

@z jsj+1

, j = 1, ... ,m

so that, in the new variables, the system reads:
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ż0 = u0
ż11 = z12u0

...
ż1s1 = z1s1+1u0
ż1s1+1 = u1
ż21 = z22u0

...
ż2s2 = z2s2+1u0
ż2s2+1 = u2

...
żm1 = zm2 u0

...
żmsm = zmsm+1u0
żmsm+1 = um.

(6)

Remark. The system obtained by application of the above algorithm and the system obtained by di↵eren-

tiation of the system variables
n

z ji , i = 1, ... , sj , j = 1, ... ,m
o

can be di↵erent. To get the same system a

feedback law must be included.

From equations (6), it is straightforward to obtain the flat outputs. Consider y0 = z0 and y1 = z11 as
the first flat outputs. Then, z12 , ... , z

1
s1+1, can be expressed in terms of y0, y1 and its derivatives, dividing

both sides by u0. The same happens for the remaining equation blocks. Therefore, the flat outputs are

y0 = z0,
y1 = z11 ,

...
ym = zm1 ,

and the remaining variables are expressed as:
8

>

>

>

>

>

<

>

>

>

>

>

:

z j2 = ż j1/u0 = ẏj/ẏ0,

z j3 = ż j2/u0 = z j3 (ẏ0, ÿ0, ẏj , ÿj)
...

z jsj+1 = ż jsj/u0 = z jsj+1

✓

ẏ0, ... , y
(sj)
0 , ẏj , ... , y

(sj)
j

◆

.

Considering s0 = max{s1, ... , sm}, we need s0 + n variables to describe n variables. So that, the system
has to be prolonged as follows:

z01 = u0,
...

z0s0 = u
(s0�1)
0 ,

v = ż0s0 .
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So far we have two well defined di↵eomorphisms: one between the original state variables (x1, ... , xn)
and the new state variables (z1, ... , zn) and the second one between (z1, ... , zn) and the flat outputs and
their derivatives. So that, given a set of initial and final conditions for the original system, these conditions
are mapped into system (6) through the di↵eomorphism. These conditions, plus additional conditions for
the extended variables, are transferred to initial and final conditions for the flat outputs by using the second
di↵eomorphism.

Given 2 (sj + 1), j = 0, ... ,m, initial and final conditions for each flat output and its derivatives, there
exists a unique 2sj + 1 degree polynomial that meets these conditions. Once the polynomial has been
defined, the controls uj(t), j = 0, ... ,m, must be found from these equations:

w0 = y
(s0+1)
0 = v ,

wj = y
(sj+1)
j = dsj+1

dtsj+1 z
j
1, j = 1, ... ,m.

Control laws for the original system are found by mapping back the control laws trough the feedback
transformation.

4. Example

Consider the system corresponding to a vehicle with equal and expanding back wheels and equal front
wheels with a fixed radius l , that was studied in [1, 2]. The vehicle dynamics is described by

0

@

ṙ

✓̇1
✓̇2

1

A =

0

@

1
0

�(tan↵)/l

1

A u1 +

0

@

0
1
r/l

1

A u2 = f1u1 + f2u2, (7)

where ✓1 and ✓2 are, respectively, the variables defining the angular position of the front and rear wheels,
↵ is a constant corresponding to the angle between the horizontal and the line obtained joining the wheel
centers, and r is the radius of the back wheels that varies with time. A diagram of the system is plotted
in Fig. (1).

Figure 1: System diagram.

The codistribution defined as

I (0) = �? = {! 2 ⇤1 | fi y! = 0, 8fi 2 4}
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has to be found. A possible solution is

! = tan↵dr � r d✓1 + l d✓2.

The goal is to put ! into the Goursat normal form. This one form fulfills (d!)^! 6= 0 and (d!)2^! = 0,
so rang(!) = 1 and Pfa↵ theorem can be applied. First of all, a function f1 such that

d! ^ ! ^ df1 = 0

has to be found. Actually this is a degree four form in a three dimensional space. Hence, it vanishes
everywhere and any f1 function works out. For simplicity, we choose

f1(r , ✓1, ✓2) = r .

A second function f2 has to satisfy

! ^ df1 ^ df2 = 0,

df1 ^ df2 6= 0.

Note that this is a degree three form in a three dimensional space. A possible function could be

f2(r , ✓1, ✓2) = ✓2l � ✓1r ,

so that,
! = df2 + g1 df1 = dz3 � z2 dz1.

The new variables expressed in terms of the original ones are

z1 = r ,

z2 = �✓1 � tan↵,

z3 = ✓2l � ✓1r .

And the system expressed in the new variables is

0

@

ż1
ż2
ż3

1

A =

0

@

1
0
z2

1

A u1 +

0

@

0
�1
0

1

A u2. (8)

Note that system (8) is not in the Goursat canonical form. As remarked before, a feedback law must
be applied in order to get a system like in equation (5). In this case, this feedback is

u1 := u1,

u2 := �u2.

Hence, system (8) becomes
0

@

ż1
ż2
ż3

1

A =

0

@

1
0
z2

1

A u1 +

0

@

0
1
0

1

A u2.

9Reports@SCM 1 (2014), 1–13; DOI:10.2436/20.2002.02.1.
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The flat outputs are easy to obtain from this canonical form,

y1 = z3,

y2 = z1,

so that

ẏ1 = ż3 = z2u1,

ẏ2 = ż1 = u1.

From here we extract

z2 =
ẏ1
ẏ2

.

The variables z = (z1, z2, z3) are expressed in terms of y = (y1, ẏ1, y2, ẏ2).

In order to define a di↵eomorphism between z = (z1, z2, z3) and y = (y1, ẏ1, y2, ẏ2), the system has to
be prolonged as follows

z4 = u1,

and two new controls,
v1 = u̇1, v2 = u2,

are defined. Therefore, the system becomes
8

>

>

<

>

>

:

ż1 = z4
ż2 = v2
ż3 = z2z4
ż4 = v1.

The di↵eomorphism linking the two sets of variables (z = (z1, z2, z3, z4) and y = (y1, ẏ1, y2, ẏ2)) is

y1 = z3,

y2 = z1,

ẏ1 = z2z4,

ẏ2 = z4.

In the flat variables, the system reduces to a pair of second-order integrators
⇢

ÿ2 = w1

ÿ1 = w2.

The feedback law relating the control laws is:
⇢

v1 = w1

v2 = (w2 � z2w1)/z4.

Each flat output has to pass through four conditions (two initial conditions and two final conditions), so
there exist two unique third degree polynomials such that

P3(t) = y1(t),

Q3(t) = y2(t).
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5. Simulations

A set of initial and final conditions have been chosen as follows

x(0) = (r(0), ✓1(0), ✓2(0)) = (1,⇡,⇡/2) ,

x(1) = (r(1), ✓1(1), ✓2(1)) = (2, 0, 0) ,

z(0) = (z1(0), z2(0), z3(0)) = (1,�⇡ � 1,⇡/2) ,

z(1) = (z1(1), z2(1), z3(1)) = (2,�1, 0) .

Adding z4(0) = 1 and z4(1) = 3, through the di↵eomorphism, we obtain the following conditions for the
flat outputs

y(0) = (y1(0), ẏ1(0), y2(0), ẏ2(0)) = (�⇡/2,�⇡ � 1, 1, 1) ,

y(1) = (y1(1), ẏ1(1), y2(1), ẏ2(1)) = (0,�3, 2, 3) .

The polynomials meeting these conditions are

P3(t) = (�2⇡ � 4)t3 + (5 + 7⇡/2)t2 + (�⇡ � 1)t � ⇡/2,

Q3(t) = 2t3 � 2t2 + t + 1.

Once the polynomials have been found, the inputs are obtained by double di↵erentiation:

w2 =
d2

dt2
y1 =

d2

dt2
P3(t),

w1 =
d2

dt2
y2 =

d2

dt2
Q3(t).

By applying inverse feedback, the controls v1(t) and v2(t) are found. Since u2(t) = v2(t) and u̇1(t) = v1(t),
the original controls can be obtained by integration:

u1(t) = 1� 4t + 6t2,

u2(t) =
3(�2 + 4t + 4t2 � ⇡ + 6t2⇡)

(1� 4t + 6t2)2
.

Replacing the controls obtained in the original system, trajectories for the system variables are found
through numerical integration. These trajectories are depicted in Fig.(2):

Figure 2: Behavior of system variables.
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In order to circumvent errors in the initial conditions, a linear controller is added to the linear system
corresponding to the flat output space. With the addition of this controller, errors in the final conditions
are minimized.

The original initial and final conditions are

(r(0), ✓1(0), ✓2(0)) = (1,⇡,⇡/2) ,

(r(1), ✓1(1), ✓2(1)) = (2, 0, 0) ,

and the perturbed initial conditions are

(r(0), ✓1(0), ✓2(0)) = (1/2, 7/2, 2) .

In the next figure, we can observe how the modified trajectories converge quickly to the desired trajectory,
which is the trajectory obtained by the unperturbed initial conditions plotted in Fig. (3):

Figure 3: Trajectories of the system variables with disturbance in the initial conditions.

6. Conclusions

An algorithm to find flat outputs has been explained. This algorithm consists in finding the equivalent
Pfa�an system to a control system and transforming this Pfa�an system into the Goursat normal form.
This Goursat normal form, when it is written again in the state space form, is very useful in order to find
the flat outputs of the system if a feedback law is included in order to simplify the equations.

As an example, point to point trajectories for a car with expanding wheels are simulated. The control
laws have been obtained by transforming the system into its equivalent trivial linear system in the flat
variables (chains of integrators), and designing the control laws by interpolation of the initial and final
conditions. The control laws for the nonlinear system are obtained mapping back the di↵eomorphisms and
the feedback laws.

Future works using Goursat canonical forms include application of this algorithm to more complex
control systems, as well as possible reinterpretation of existing results in the literature that have been
obtained in the framework of vector fields.
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Cauchy-Riemann no homogènia.
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A quantitative Runge’s Theorem in Riemann surfaces

1. Introduction

In complex analysis, Runge’s theorem (also known as Runge’s approximation theorem) is named after the
German mathematician Carl Runge who first proved it in the year 1885. It states the following:

Theorem 1.1. Let K be a compact subset of the extended complex plane Ĉ ⌘ C [ {1} and suppose
that f is holomorphic on an open set containing K. Let Q be a subset of Ĉ\K such that each connected
component of Ĉ\K contains a point of Q. Then f can be approximated uniformly on K by rational
functions with poles in Q.

In particular, if K is a compact subset of the complex plane, and if the complement of K is connected,
then each holomorphic function in a neighborhood of K can be approximated uniformly on K by polynomials.
Runge’s theorem has many applications in the theory of functions of a complex variable and in functional
analysis. The proofs of this theorem and its applications can be found in any monograph of complex
analysis as [5, 10, 11].

The main contribution of this paper is a new proof of Runge’s theorem. The proof generalizes to the
following theorem for Riemann surfaces.

Theorem 1.2. Let X be a compact Riemann surface and let K ⇢ X be a compact subset. Moreover, let Q
be any subset of X\K which contains precisely one point from each connected component of X\K. Then
any holomorphic function on a neighborhood of K can be approximated uniformly on K by meromorphic
functions on X whose poles lie in Q.

The proof is based on Hörmander’s L2-estimates for the inhomogeneous @̄-equation. More precisely, a
smooth approximant is obtained by multiplying f by a cut-o↵ function � adapted to K . Then, the rational
function of the form g = �f � u will provide us the desired approximation of f on K . This leads to the
@̄-equation @̄u = f @̄�, where u must be small on K and with controlled growth near Q (so that g is
meromorphic with poles only on Q). This is achieved by constructing an appropriate subharmonic weight
with singularities located on Q and applying Hörmander’s result.

A clear advantage of this method is that it controls the order of the poles. This explains the word
“quantitative” in the title.

In the next section we give a detailed account of the Riemann sphere case Ĉ in order to illustrate the
main di�culties. This case, although easier than the general case of Riemann surfaces, introduces the
general procedure and is conceptually easier to understand. The general case is dealt with in Section 3.

2. A particular case: the Riemann sphere

Let K be a compact set in Ĉ such that Ĉ\K has finitely many regions ⌦
1

, ... ,⌦
n

. We fix one point z
i

in
each of the components ⌦

i

. In order to prove Runge’s theorem we need to see that given f 2 H(K ) 1 and
" > 0 there is a rational function g = p/q with poles only in z

1

, z
2

, ... , z
n

such that sup
K

|f � g |  ".

Remark. The degree of q depends on f , the position of the points z
1

, ... , z
n

and ". However, the precise
dependence is not clear when looking at the standard proofs. Our goal is to prove Runge’s theorem with
control on the poles of g .

1

By definition, f 2 H(K) if there exists an open set U with K ⇢ U ⇢ ˆC s.t. f is holomorphic on U.
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The main tools in our proof are Hörmander L2-estimates and potential theory, for which we refer
to [3, 4, 9] respectively.

To make it simpler we will split the proof into several steps.

Step 1. Green’s function for ⌦
i

with pole z
i

. Recall the definition of Green’s function.

Definition 2.1. Let D be a proper subdomain of Ĉ. A Green’s function for D is a map g
D

: D ⇥ D �!
(�1,1] such that for each ! 2 D:

(a) g
D

(·,!) is harmonic on D\{!} and bounded outside any neighbourhood of !.

(b) g
D

(!,!) = 1 and lim
z!! g

D

(z ,!) =

(

log |z |+ O(1) ! = 1
� log |z � !|+ O(1) ! 6= 1 .

(c) lim
z!⇣

g
D

(z ,!) = 0 for nearly everywhere 2 ⇣ 2 @D.

Specifically, we consider the case in which D = ⌦
i

and ! = z
i

. Since ⌦
i

is a regular3 domain in Ĉ
such that @⌦

i

is non-polar4, there exists a unique Green’s function

G
i

(z) := g
⌦

i

(z , z
i

) z 2 ⌦
i

.

In particular,

• G
i

(·) = g
⌦

i

(·, z
i

) > 0,

• lim
z!⇣ Gi

(z) = lim
z!⇣ g⌦

i

(z , z
i

) = 0 for ⇣ 2 @⌦
i

.

Moreover, we can extend G
i

to the whole Ĉ by declaring G
i

⌘ 0 outside of ⌦
i

, i = 1, ... , n.

As f 2 H(K ) and G
i

(z) 2 C(⌦
i

\{z
i

}) with G
i

(z) � 0 in ⌦
i

and G
i

(z) ⌘ 0 on @⌦
i

, there exists
�
i

> 0 small enough such that f is defined in eU
i

:= {z 2 ⌦
i

: G
i

(z) < �
i

}, see Figure 1.

Take now � such that 0 < �  min{�
1

, ... , �
n

}, so that f is defined in U
i

:= {z 2 ⌦
i

: G
i

(z) < �}
for every i = 1, ... , n. At the moment � is freely chosen in the region 0 < �  min{�

1

, ... , �
n

}. However,
further on we will give � a specific value.

So far we have G
i

(z)�� 2 C(⌦
i

\{z
i

}) with G
i

(z)�� ⌘ 0 in @U
i

. The next step is to extend G
i

(z)��
to the entire plane Ĉ; define finally G

i

(·) : Ĉ �! [0,1] as:

G
i

(z) :=

⇢

G
i

(z)� � if z 2 ⌦
i

\U
i

,
0 if z /2 ⌦

i

\U
i

.

2

A property is said to hold nearly everwhere (n.e.) on a subset S of C if it holds everywhere on S\E , for some Borel polar

set E .
3

Let D be a proper subdomain of

ˆC, and let ⇠
0

2 @D. A barrier at ⇠
0

is a subharmonic function b defined on D \N, where

N is an open neighborhood of ⇠
0

satisfying

b < 0 on D \ N and lim

z!⇠
0

b(z) = 0

A boundary point at which a barrier exists is called regular. If every ⇠ 2 @D is regular, then D is called a regular domain.

4

In the area of classical potential theory, polar sets are the “negligible sets”, similar to the way in which sets of measure

zero are the negligible sets in measure theory.
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Figure 1: Definition of eU
i

.

Step 2. Construction of a subharmonic weight ��(z) in Ĉ\{z
1

, ... , z
n

}. Notice that G
i

(·) ⌘ G
i

(·) � �
on ⌦

i

\U
i

. In particular G
i

is subharmonic in (⌦
i

\U
i

)\{z
i

}. We conclude that G
i

(·) is subharmonic on
Ĉ\{z

1

, ... , z
n

}, i = 1, ... , n.

We see that ��(z) := max{0,G
1

(z),G
2

(z), ... ,G
n

(z)} is subharmonic on Ĉ\{z
1

, ... , z
n

}, since the
maximum of subharmonic functions is again subharmonic. The explicit expression of �� is

��(z) =

(

G
i

(z) = G
i

(z)� � if z 2 ⌦
i

\U
i

0 if z 2 K [S

N

j=1

U
j

.

Step 3. A cut-o↵ function adapted to K. In this step we construct a suitable smooth cut-o↵ function
�, so that �f is a smooth extension of f which is still holomorphic in K .

Consider a parameter t > 0 small enough, which will be fixed later. We look for a smooth cut-o↵
function �(z) 2 C1(C) such that � = 0 when G

i

(z) � � and � = 1 when z 2 K or G
i

(z)  � � t�/2, see
Figure 2. The easier way to achieve this is to take �(z) = '�(

P

i

G
i

(z)) with '� 2 C1(R) such that:

'�(x) =

(

1 if x  � � t�/2,

0 if x � �.

Since by construction
X

i

G
i

(z) =

(

G
i

(z) if z 2 ⌦
i

,

0 otherwise,

we obtain:

�(z) =

(

0 if z 2 {z 2 ⌦
i

: G
i

(z) � �},
1 if z 2 K [S

n

i=1

{z 2 ⌦
i

: G
i

(z)  � � t�/2}.

Note that

Supp(@̄�) ⇢
n

[

i=1

{z 2 ⌦
i

: � � t�/2  G
i

(z)  �}

and
|@̄�| ⇠ |1/(t�/2)|. (1)
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Figure 2: Definition of �.

Step 4. The @̄-equation. Here the smooth extension �f will be corrected, with the help of an appro-
priate solution to a @̄-equation, to make the resulting function rational with poles on z

j

. The function
approximating f will be of the form g = �f � u, where @̄u = f @̄� on Ĉ\{z

1

, ... , z
n

}.
We will use the solution u given by the following theorem of Hörmander’s. This solution has minimal

norm in L2(e��).

Theorem 2.2. [3, pp. 13] Let ⌦ be a domain in Ĉ and suppose � 2 C2(⌦) with �� � 0. Then, for any
f 2 L2

loc

(⌦) there is a solution u to @̄u = f satisfying

Z

|u|2e�� 
Z |f |2

��
e��.

Step 5. The measure ��� � 0 is the harmonic measure of {G
i

= �} with respect to z
i

in ⌦
i

\U
i

.
Hörmander’s theorem provides a solution u with

Z

|u|2e�� 
Z

1

��
|f @̄�|2e��,

whenever �� � 0.

Our first candidate is � = ��, which is subharmonic on Ĉ\{z
1

, ... , z
n

}. We see that the Radon measure
��� has

���

�

�

K[U
1

[···[U
n

⌘ 0 and ���

�

�

(⌦

i

\U
i

)\{z
i

} ⌘ 0 i = 1, 2, ... , n.

Therefore, ��� is supported in the union
S

n

i=1

@U
i

, that is, in the curve {G
i

(z) = �}.
We shall see next that ��� is the harmonic measure of {G

i

= �} with respect to z
i

in the domain
⌦
i

\U
i

.

Definition 2.3. Let D be a proper subdomain of Ĉ, and denote by B(@D) the �-algebra of Borel subsets
of @D. A harmonic measure for D is a function !

D

: D ⇥ B(@D) �! [0, 1] such that:

(a) for each z 2 D, the map B 7! !
D

(z ,B) is a Borel measure on @D,

(b) if � : @D �! R is a continuous function, then H
D

� = P
D

� on D, where P
D

� is the generalized
Poisson integral and H

D

� is the Perron function of � on D.
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The harmonic measure of E 2 B(@D) at z 2 D relative to D is the Perron solution u(z) of the Dirichlet
problem in D with boundary values 1 on E and 0 on @D\E . Summarising, if �

E

denotes the indicator
function of E ⇢ @D\E then

u(z) = sup
n

v(z) : v subharmonic in D and lim sup
!!⇣

v(!) < �
E

(⇣) for ⇣ 2 @D
o

.

We shall prove now that

���(⇣) = 2⇡
n

X

i=1

!
⌦

i

\U
i

(z
i

, ⇣), (2)

where !
⌦

i

\U
i

: ⌦
i

\U
i

⇥ B �

@(⌦
i

\U
i

)
� �! [0, 1] is the harmonic measure for ⌦

i

\U
i

, and we denote by

B(@(⌦
i

\U
i

)) the �-algebra of Borel subsets of @(⌦
i

\U
i

).

Take in the definition D = ⌦
i

\U
i

and fix z
i

2 ⌦
i

\U
i

. Since @
�

⌦
i

\U
i

�

is non-polar there exists a unique
harmonic measure satisfying (a) and (b). We then repeat the same reasoning for each of the “holes”.

By definition, the generalized Laplacian acts on test functions as:

Z

D

 ��� =

Z

D

��� dA  2 C1
c

(D) D = Ĉ\{z
1

, ... , z
n

}.

Since sup(���) ⇢
S

n

i=1

{z 2 ⌦
i

: G
i

(z) = �} and �� ⌘ 0 in K [U
1

[ · · ·[U
n

, if  2 C1
c

(D), the previous
expression becomes

n

X

i=1

Z

{z2⌦
i

:G

i

(z)=�}⌘@(⌦
i

\U
i

)

 ��� =
n

X

i=1

Z

(⌦

i

\U
i

)\{z
i

}
��� dA.

Thus, in order to prove (2) we need to see that

Z

(⌦

i

\U
i

)\{z
i

}
��(⇣)� (⇣) dA = 2⇡

Z

{z2⌦
i

:G

i

(z)=�}⌘@(⌦
i

\U
i

)

 (⇣) d!
⌦

i

\U
i

(z
i

, ⇣).

To see this, we are going to use the relationship between the harmonic measure and the normal derivative
of Green’s function, which is the Poisson kernel.

Theorem 2.4. [5, pp. 409] Let D be a bounded domain with piecewise smooth boundary. Fix ⇣ 2 D and
let g

D

(z , ⇣) be the Green’s function for D (with pole at ⇣). Then for any Borel mesurable set B 2 B(@D)
we have

� 1

2⇡

Z

B

@g
D

@n
(z , ⇣) ds = !

D

(⇣,B).

Going back to the proof of the identity above, we consider the particular case D = ⌦
i

\U
i

with ⇣ = z
i

,
and repeating the computations for each hole, we get

� 1

2⇡

Z

B

@��
@n

(z , z
i

) ds = !
⌦

i

\U
i

(z
i

,B),
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for i = 1, ... , n. Therefore, applying Stoke’s theorem, we obtain

2⇡

Z

@(⌦
i

\U
i

)

 (⇣) d!
⌦

i

\U
i

(z
i

, ⇣) = 2⇡

"

� 1

2⇡

Z

@(⌦
i

\U
i

)

 (⇣)
@��
@n

(z , z
i

) ds

#

= 2⇡

"

 (z
i

) +
1

2⇡

Z

⌦

i

\U
i

��(⇣)� (⇣) dA

#

= 2⇡ (z
i

) +

Z

⌦

i

\U
i

��(⇣)� (⇣) dA.

Taking " > 0 small enough and splitting the last integral
Z

⌦

i

\U
i

��(⇣)� (⇣) dA =

Z

(⌦

i

\U
i

)\B(z

i

,")

��(⇣)� (⇣) dA+

Z

B(z

i

,")

��(⇣)� (⇣) dA

= lim

"!0

+

"Z

(⌦

i

\U
i

)\B(z

i

,")

��(⇣)� (⇣) dA+

Z

B(z

i

,")

��(⇣)� (⇣) dA

#

=

Z

(⌦

i

\U
i

)\{z
i

}
��(⇣)� (⇣) dA+ lim

"!0

+

Z

B(z

i

,")

��(⇣)� (⇣) dA.

We compute the second integral:
Z

B(z

i

,")

��(⇣)� (⇣) dA =

Z

B(z

i

,")

✓
��(⇣)� log

1

|⇣ � z
i

| + log

1

|⇣ � z
i

|
◆

� (⇣) dA

=

Z

B(z

i

,")

✓
��(⇣)� log

1

|⇣ � z
i

|
◆

� (⇣) dA�
Z

B(z

i

,")

log |⇣ � z
i

|� (⇣) dA

=

Z

B(z

i

,")

�

✓
��(⇣)� log

1

|⇣ � z
i

|
◆

| {z }
0

 (⇣) dA�
Z

B(z

i

,")

 (⇣) �(log |⇣ � z
i

|)
| {z }

2⇡�
z

i

(⇣)

= �2⇡ (z
i

),

since ��(⇣) has a logarithmic singularity and so ��(⇣)� log 1

|⇣�z

i

| is harmonic in {z
i

}, and also on B(z
i

, ")
for " small enough. Thus, we have

2⇡

Z

@(⌦
i

\U
i

)

 (⇣) d!
⌦

i

\U
i

(z
i

, ⇣) =

Z

(⌦

i

\U
i

)\{z
i

}
��(⇣)� (⇣) dA,

as desired.

Step 6. The curve {G
i

= �} is smooth and ��� is comparable to the length of the curve. We have
seen that ��� is the harmonic measure of {G

i

= �} with respect to z
i

in the domain ⌦
i

\U
i

. Here we prove
that the curve {G

i

= �} is smooth; later we shall use the smoothness to prove that ��� is comparable to
the length of the curve.

Recall that F ⌘ P

n

i=1

G
i

is harmonic in its domain of definition
F

n

i=1

(⌦
i

\U
i

)\{z
i

}. Let us fix here �,
taking 0 < �  min{�

1

, ... , �
n

} such that if F (z) = �, then the vector rF (z) = (F
x

(z),F
y

(z)) 6= (0, 0).
To prove that such � exists we recall Sard’s theorem.

Theorem 2.5. [1, pp. 34] Let f : R2 �! R be Ck with k � 2. Let X denote the critical set of f ,
X = {x 2 R2 : rf (x) = (0, 0)}. Then the image f (X ) has Lebesgue measure 0 in R.

The existence of � is proved by contradiction. Assume that for all � 2 (0,min{�
1

, ... , �
n

}] there
exists at least a point z� in the curve {F = �} such that rF (z�) = (0, 0). Define M := {z� : 0 <
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�  min{�
1

, ... , �
n

}}. By Sard’s theorem F (M) has measure zero; however it is clear that F (M) =
(0,min{�

1

, ... , �
n

}], so m(F (M)) = min{�
1

, ... , �
n

} > 0, and we get a contradiction.

Therefore, according to the implicit function theorem, the curve {F = �} (or equivalently {G
i

= �}) is
smooth.

In order to prove that ��� is comparable to the length of the curve we use that the gradient at a point
is perpendicular to the level set at that point:

r�� ⌘ �@��

@n
.

Since r�� ⌘ rF 6= (0, 0) over the smooth curve {G
i

= �}, we can extend this property by continuity to
a “thin strip” {z : � � k�  G

i

(z)  �}. Using that 0 6= �@��
@n (z) ⌘ r��(z) on the “thin strip”, we see

that there exist c
1

< c
2

< 0 such that c
1

 @��
@n  c

2

< 0 on it. Hence:

� c
1

2⇡
l(B) = � 1

2⇡

Z

B

c
1

ds � � 1

2⇡

Z

B

@��

@n
(z , ⇣) ds = !

D

(⇣,B),

� c
2

2⇡
l(B) = � 1

2⇡

Z

B

c
2

ds  � 1

2⇡

Z

B

@��

@n
(z , ⇣) ds = !

D

(⇣,B).

Combining both inequalities, we obtain

�c
2

/2⇡ l(B) = C
2

· l(B)  !
D

(⇣,B)  C
1

· l(B) = �c
1

/2⇡ l(B).

As a result, the harmonic measure is comparable to the length of the curve and consequently, ��� is also
comparable to the length of the curve.

Remark. In order to derive an estimate from Hörmander’s theorem, it is necessary to have ��� � � > 0,
for some � 2 R.

Step 7. A function � as an average of ��’s and a lower bound for ��. The most natural approach
is to replace the weight �� by an average of �� which distributes the Laplacian from the border to a
neighborhood. To do this, we consider

� :=
1

t�

Z �

��t�
�
s

ds.

Splitting the domain of definition into three regions we see that

�(z) =

8

>

>

<

>

>

:

0 in K [ {z 2 ⌦
i

: G
i

(z) < � � t�},
1

2t�
[G

i

(z)� (� � t�)]2 in {z 2 ⌦
i

: � � t�  G
i

(z)  �},
G
i

(z)� (� � t�/2) in {z 2 ⌦
i

: G
i

(z) > �}.
In particular � is harmonic in K [ {z 2 ⌦

i

: G
i

(z) < � � t� or G
i

(z) > �} and the support of �� is
contained on the “thin strips” {z 2 ⌦

i

: � � t�  G
i

(z)  �}.
To prove that �� is bounded below in {z 2 ⌦

i

: � � t�  G
i

(z)  �}, we use the expression
�(z) = 1

2t� [Gi

(z)� (� � t�)]2 in {z 2 ⌦
i

: � � t�  G
i

(z)  �}. We have

��(z) =
1

2t�

2

6

4

�(G
i

(z)2) +

0

z }| {

�(� � t�)2�2(� � t�)

0

z }| {

�G
i

(z)

3

7

5

=
1

2t�
�(G

i

(z)2)

=
1

t�

"

✓

@G
i

@x

◆

2

+

✓

@G
i

@y

◆

2

#

(z).
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The last identity follows from the fact that �(G
i

)2 = 2(rG
i

)2, which is a well-known property of harmonic
functions:

�(G
i

)2 = r(rG
i

2) = r(2G
i

rG
i

) = 2(rG
i

rG
i

+ G
i

�G
i

) = 2(rG
i

)2.

However, rG
i

(z) 6= 0 in {z 2 ⌦
i

: � � t�  G
i

(z)  �}, so �(G
i

(z)2) > 0 too. Since G
i

is continuous on
it, according to Weierstrass’ theorem there exists e� > 0 such that �(G

i

(z)2) � e�. Therefore, there exists
� > 0 such that �� � � on {z 2 ⌦

i

: � � t�  G
i

(z)  �} and in particular on Supp @̄�, since we have
the following inclusion of sets

Supp @̄� ⇢ {z 2 ⌦
i

: � � t�/2  G
i

(z)  �} ⇢ {z 2 ⌦
i

: � � t�  G
i

(z)  �}.
Furthermore,

�� =
1

t�

Z �

��t�
��

s

ds.

Since, as we have seen, ��� is the harmonic measure, which is comparable with the length of the curve,
we obtain

��(E ) =
1

t�

Z �

��t�
��

s

(E ) ds ⇡ m(E \ “strip”).

Step 8. Hörmander’s estimate with the weight � and the final approximant function. Since � is
subharmonic on Ĉ\{z

1

, ... , z
n

} and satisfies �� � � > 0 on Supp @̄�, Hörmander’s theorem with the
subharmonic weight function M�, with M >> 0 to be fixed later, yields:

Z

ˆC\{z
1

,...,z

n

}
|u|2e�M� 

Z

ˆC\{z
1

,...,z

n

}
|f @̄�|2 e

�M�

M��
=

Z

Supp

¯@�
|f @̄�|2 e

�M�

M��

 1

M�

Z

[
i

{z2⌦
i

:��t�/2G

i

(z)�}
|f @̄�|2e�M�

 1

M�

Z

[
i

{z2⌦
i

:��t�/2G

i

(z)�}
|f @̄�|2e�Mt�/8.

The last inequality is a consequence of the fact that if z 2 ⌦
i

with ��t�/2  G
i

(z)  �, then �(z) � t�/8.

Taking M = 16

t� log
�

1/(⇡r2)1/2"
�

, where r will be fixed in the next lines, we see that e�Mt�/8 = ⇡r2 ·"2.
This and (1) show that

Z

ˆC\{z
1

,...,z

n

}
|u|2e�M� 

 

4

M�(t�)2

Z

[
i

{z2⌦
i

:��t�/2G

i

(z)�}
|f |2
!

⇡r2 "2 . ⇡r2 "2.

The last inequality follows from the fact that f is holomorphic in the domain of integration, which is
compact. Using �|

K[U
i

⌘ 0 we have that
Z

K[U
i

|u|2 
Z

ˆC\{z
1

,...,z

n

}
|u|2e�M�,

and so
Z

K[U
i

|u|2 . ⇡r2 "2.

We wish to take advantage of the last inequality to deduce that sup
K

|u| . ". Since @̄u = f @̄� on
Ĉ\{z

1

, ... , z
n

} and � ⌘ 1 in a small neighborhood of K , we have that @̄� = 0 there. It follows that
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@̄u = 0 and thus u is holomorphic on this small neighborhood. In particular |u|2 is subharmonic and, by
the sub-mean value property, for r > 0 small enough (say, 0 < r < d(K ,Uc

i

), i = 1, ... , n), we have

|u(z)|2  1

⇡r2

Z

B(z,r)

|u(⇣)|2 dA(⇣)  1

⇡r2

Z

K[U
i

|u(⇣)|2 dA(⇣) (z 2 K ).

Therefore,
sup
K

|u|2 . ⇡r2 "2/⇡r2 = "2.

Using the previous inequality and the fact that � ⌘ 1 in K , we get

sup
K

|u| = sup
K

|g � �f | = sup
K

|g � f | . ".

Moreover, as g = �f � u, we get @̄g = �@̄f . Since f 2 H(K [ U
i

) we have @̄f ⌘ 0 in K [ U
i

. This
and the fact that � ⌘ 0 in ⌦\U

i

show that �@̄f ⌘ 0. Therefore @̄g = 0 in Ĉ\{z
1

, ... , z
n

}, or equivalently
g is holomorphic in Ĉ\{z

1

, ... , z
n

}.
Let us see next that the singularities z

i

must be poles, and let’s quantify their order.

Consider B
i

⌘ B(z
i

, r
i

)\{z
i

}. It is clear that � = 0 in B
i

(for r
i

small enough). Near any of the
singularities z

i

, g = u, and thus
R

B

i

|g |2e�M� < 1. On the other hand, the sizes of � and �� are very
similar in size. In B

i

��(z) ⇡
(

� log |z � z
i

|+ O(1) z
i

6= 1,

log |z |+ O(1) z
i

= 1.

As a consequence,

e�M� ⇡ e�M�� ⇡
(

eM log |z�z

i

| = |z � z
i

|M z
i

6= 1
e�M log |z| = |z |�M z

i

= 1
and therefore,

Z

B

i

|g |2e�M� ⇡

8

>

>

<

>

>

:

Z

B

i

|g |2|z � z
i

|M < 1 z
i

6= 1 =) |g(z)| ⇡ |z � z
i

|�↵/2 with ↵  M

Z

B

i

|g |2|z |�M < 1 z
i

= 1 =) |g(z)| ⇡ |z |↵/2 with ↵  M.

Hence, g can only have poles on the z
i

and on 1, and the order of such poles is at most M/2.

Finally, in the Riemann sphere Ĉ the field of meromorphic functions is simply the field of rational
functions over the complex field. Therefore, the meromorphic function g can be written as the rational
function p/q, where the degree of g is smaller than M/2 with M ⇡ log(1/"). Thus, the degree of q is
smaller than C log(1/") with

C = 8

t�

log((⇡r2)1/2")
log " ⇡ 8

t� .

We finish with the explanation of the geometric meaning of the parameter �, which gives the size of
the final estimate. By hypothesis, f 2 H(K ), which means that there exists U open with K ⇢ U ⇢ Ĉ and
such that f is holomorphic in U. Then � measures the size of this extension, i.e

� ⇡ d(K ,Uc).

As expected, the estimate shows that the order of the poles is inversely proportional to the size of the
extension. A greater holomorphy domain for a function will result in a smaller order of its poles. In the
extremal case where the starting function is entire, the order of the poles vanishes and the approximating
function is polynomial.
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3. The general case: Riemann surfaces

In the previous section, we have proved the classical Runge’s theorem. This proof, although conceived for
compact subsets of the Riemann sphere has the advantage that works mutatis mutandis on any Riemann
surface X , with meromorphic functions on X playing the role of rational functions.

The result we now present is essentially equivalent to the Behnke-Stein generalization of the Runge
approximation theorem [2]. Let us highlight that the former is a key tool used in a wide amount of problems
in the context of open Riemann surfaces. It can be stated in several ways, for instance:

Theorem 3.1. (Behnke-Stein [1948]) Let X be a Riemann surface and K a compact subset of X . Every
holomorphic function in a neighborhood of K is uniformly approximable on K by holomorphic functions on
X if and only if X\K has no connected components with compact closure in X .

If X is a compact Riemann surface, then the theorem is vacuous. This is the reason why we say “the
Behnke-Stein theorem for open Riemann surfaces”.

The Behnke-Stein theorem gives a relationship between analytical and topological results. We start
assuming the analytical part and we will prove the topological implication. We do this by contradiction.

Assuming the approximation condition, we consider U a relatively compact component of the comple-
ment of K and fix p a point in U. Let us now use the following results:

Proposition 3.2. [8, pp. 31] Let X and Y be Riemann surfaces. If  : X �! Y is a nonconstant
holomorphic mapping, then the fiber  �1(x) over each point x 2 Y is discrete in X (i.e.  �1(x) has no
limit points in X).

Proposition 3.3. [8, pp. 89] Let P be a discrete subset of an open Riemann surface X . If ⇠
p

2 C for each
p 2 P, then there exists a function h 2 H(X ) with h(p) = ⇠

p

for every p 2 P.

Let f be a holomorphic function that vanishes at p, let P := f �1(0) be the (discrete) zero set of f ,
and consider the holomorphic function h given by the previous proposition such that

h(P � {p}) = 0 and h(p) = 1.

Define the meromorphic function
g := h/f .

It is clear that g has only one singularity (the point p), so it is holomorphic on K . Furthermore, the
previous assumptions assert that we can find a sequence {g

n

}
n

of holomorphic functions on X converging
uniformly on K to g : for all " > 0 there exists n

0

= n
0

(") such that:

sup
K

|g � g
n

|  " 8n � n
0

.

Then the sequence fg
n

converges to h uniformly on K . Note that this result still holds for the boundary of
U. Hence, by the maximum principle, if converges uniformly to h on U, that is

sup
U

|h � fg
n

|  "̃ 8n � n
0

.

This contradicts the fact that fg
n

vanishes at p. Therefore, U cannot be relatively compact.

Also, it is easy to see that the analytical part of Behnke-Stein follows from the topological part applying
the following result [12], which is similar to classical Runge’s theorem.
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Theorem 3.4. Let X be a compact Riemann surface, and K ⇢ X a compact subset. Let Q be any subset
of X\K which contains (precisely) one point q

i

from each connected component W
i

of X\K. Then,
any holomorphic function on a neighborhood of K can be approximated uniformly on K by meromorphic
functions on X whose poles lie in Q.

Remark. Any relatively compact open subset of any Riemann surface can also be regarded as an open
subset of a compact Riemann surface.

Let us now state a couple of propositions that will be useful in our proof. First, recall that an open set
Y ⇢ X is said to be geometrically Runge in X if X\Y has no compact connected components. Moreover,
we have the following exhaustion result.

Proposition 3.5. [14, pp. 127] Suppose X is an open Riemann surface. Then there exists a sequence
Y
0

⇢⇢ Y
1

⇢⇢ Y
2

⇢⇢ · · · of relatively Runge domains with
S

Y⌫ = X so that every Y⌫ has a regular
boundary.

On the other hand, we recall here the so-called Schottky double. This construction can be performed
as follows.

If M is a complex manifold with C
1

,C
2

, ... ,C
m

boundary components, one can consider an exact
duplicate of it, say eM, with the same number of boundary components, say fC

1

,fC
2

, ... , fC
m

. Obviously, for
each point x 2 M there is a “symmetric” point ex 2 eM. The Schottky double M⇤ is formed as a disjoint
union M t eM and identifying each point x 2 C

i

with its symmetric point ex 2 eC
i

for 1  i  m.

Proposition 3.6. [13, pp. 217] Let Y be relatively Runge domain with regular boundary on a Riemann
surface X . Then the Schottky double Y ⇤ obtained by gluing Y and its mirror image eY together along the
boundary is a compact Riemann surface.

We are now ready to prove the analytical implication. By hypotesis, X is an open Riemann surface
and K a compact subset of X such that X\K has no connected components with compact closure in X .
Denote by {Y⌫}⌫ the exhaustion sequence of X given by Proposition 3.5. It is clear that there exists ⌫

0

such that K ⇢ Y⌫ , eK ⇢ fY⌫ for all ⌫ � ⌫
0

.

Let Q be any subset of eX\eK which contains (precisely) one point eq
i

from each connected component fW
i

of eX\eK . Considering Y ⇤
⌫ with ⌫ � ⌫

0

, we are in the hypothesis of theorem 3.4, therefore any holomorphic
function on a neighborhood of K can be approximated uniformly on K by meromorphic functions on Y ⇤

⌫

whose poles lie in Q for all ⌫ � ⌫
0

.

In particular, for " > 0 and f 2 H(K ) there exist g
0

2 M(Y ⇤
⌫
0

+1

) (so g
0

2 H(Y⌫
0

+1

)) such that

sup
z2K

|(f � g
0

)(z)| < "/2.

The idea is to apply the theorem to each pair {(Y⌫
0

+(i+2)

,Y⌫
0

+i

)}
i�0

to see that there exist functions

g
1

2 H(Y⌫
0

+2

) such that |g
1

� g
0

| < "/22 on Y⌫
0

,

g
2

2 H(Y⌫
0

+3

) such that |g
2

� g
1

| < "/23 on Y⌫
0

+1

,

... ...

g
n

2 H(Y⌫
0

+(n+1)

) such that |g
n

� g
n�1

| < "/2n on Y⌫
0

+(n�1)

.

To check that the family F = {g
n

}
n�0

is normal in X it is enough to prove that it is uniformly bounded
in compact subsets of X . However, if K̃ is an arbitrary compact set of X , it is clear that there exists n

0
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such that K̃ ⇢ Y⌫
0

+n

for all n � n
0

. As g
n

0

2 H(Y⌫
0

+(n

0

+1)

), we have g
n

0

2 H(K̃ ), so sup
˜

K

|g
n

0

|  fC
˜

K

.
Moreover, using our construction, we observe that for all n � n

0

, we have:

sup
˜

K

|g
n

|  sup
˜

K

|g
n

� g
n

0

|+ sup
˜

K

|g
n

0

|  sup
Y⌫

0

+n

|g
n

� g
n

0

|+ sup
˜

K

|g
n

0

|  "+ fC
˜

K

= C
˜

K

.

Applying Montel’s theorem, there exists a subsequence {g
n

k

}
k

which converges uniformly on every
compact subset of X . And by Weierstrass’ theorem:

g := lim
k!1

g
n

k

2 H(X ).

Finally, note that:

sup
z2K

|(f � g)(z)|  sup
z2K

|(f � g
0

)(z)|+ sup
z2K

|(g
0

� g)(z)| < ".

Therefore, every holomorphic function in a neighborhood of K can be uniformly approximated on K by
holomorphic functions on X , as desired.

Remark. Theorem 3.4 becomes the classical Runge’s theorem when:

i) X = Ĉ ⌘ C [ {1} is the Riemann sphere and K ⇢ C,

ii) q1 = 1 for the component W1 of X\K containing 1.

We now turn our attention to the proof of theorem 3.4. For this purpose, we shall follow the same
procedure that we have detailed in the case of the Riemann sphere. We will only focus on the details of
the challenges posed by the new construction.

The two new problems that arise when we try to generalize our result are:

1. the existence of Green’s functions in Riemann surfaces,

2. estimates for the solution to the @̄-equation in Riemann surfaces.

Obtaining a subharmonic weight function from the Green’s functions of the holes can be achieved in a
simple way.

1. Existence of Green’s functions in Riemann surfaces. There is not always a Green’s function for a
Riemann surface. From the viewpoint of potential theory a Riemann surface can be classified as:

(1) hyperbolic, if it has a non-constant bounded subharmonic function,

(2) elliptic, if it is compact, or

(3) parabolic, otherwise.

We call this classification potential-theoretic because the condition of having a bounded subharmonic
function is equivalent to the existence of a Green’s function.

Given this, it is necessary to impose that the holes W
i

are hyperbolic. This follows from the fact that
holes are regular domains, see Figure 3.
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Figure 3: Example of our setting.

Proposition 3.7. [6, pp. 95] Let ⇠ 2 @⌦. If the connected component of @⌦ containing ⇠ consists of
more that one point, then ⇠ is a regular point for ⌦. In particular, if ⌦ is simply connected, then every
point of @⌦ is a regular point.

Proposition 3.8. [14, pp. 118] Let X be a Riemann surface and let ⌦ ⇢ X be an open subset all of whose
boundary points are regular. Then the Dirichlet problem has a solution on ⌦.

We have that ⌦ = W
i

is hyperbolic. Let us give now the definition of Green’s function.

Definition 3.9. LetM be a Riemann surface. A Green’s function forM is a map g
M

: M⇥M �! (�1,1]
such that for each x 2 M:

(a) g
M

(·, x) is harmonic on M\{x} (superharmonic on M),

(b) if z is any local coordinate in a neighborhood U of x which z(x) = 0 then

g
M

(·, x)� log
1

|z(·)|
is harmonic on U,

(c) if H is any other superharmonic function satisfying (a) and (b) then

g
M

(·, x)  H(·).

In our case, identifying M with W
i

and x with q
i

,

G
i

(z) := g
W

i

(z , q
i

) z 2 W
i

.

Remark. On a Riemann surface M with boundary, a Green’s function is a solution of the distributional
boundary value problem

i@@̄g
M

(·, x) = 2⇡�
x

g
M

(·, x)��
@M

= 0

as x varies over the points of the interior of M.

2. @̄-estimates in Riemann surfaces. The version of Hörmander’s theorem that we want to use involves
properties of holomorphic line bundles over Riemann surfaces. It will be detailed further on, in the statement
of theorem 3.10. For a more through approach to these we refer the reader to [4, 14].
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Now we shall see that we are under the conditions of theorem 3.10. Fix a Hermitian metric

! = e� 
i

2
dz ^ dz̄

for the compact Riemann surface X and note that a Riemannian metric for X is a Hermitian metric for
T 1,0

X

⌘ (K
X

)⇤, where T 1,0

X

and K
X

are the holomorphic tangent and canonical bundles of X , respectively.
As every Riemann surface admits a line bundle that has a metric of strictly positive curvature c(·), there is
a holomorphic line bundle L �! X and a smooth Hermitian metric e�' for L such that i@@̄' is a strictly
positive (1, 1)-form. This means that

ic(') = i@@̄(') = l!,

with l a strictly positive function.

We note that if F and F 0 are line bundles over X , we can form a new line bundle F ⌦ F 0 by taking
tensor products on the fibers. Moreover if � is a metric on F and �0 is a metric on F 0 then � + �0 is a
metric on F ⌦ F 0 ⌘ F + F 0.

Thus, the holomorphic line bundle L �! X with hermitian metric e�' is strictly positive. Now we
modify this line bundle L �! X to achieve our goal. For this purpose we introduce a new free-parameter
k >> 0, which we will later establish, and we consider L⌦k = kL the product of L with itself k times. As
the metric on L is represented by a smooth function ', then the metric on L⌦k is given by k'.

Now we consider the Picard group Pic(X ) of holomorphic line bundles on a complex manifold X . We
have L⌦k �! X a holomorphic line bundle with Hermitian metric e�k', and it is clear that i@@̄(k') is a
strictly positive (1, 1)-form. More precisely

ic(k') = i@@̄(k') = k i@@̄(') = k l!,

with l a strictly positive function. However, we find a technical di�culty: Hörmander’s estimate for the
@̄-equation deals with (1, 1)-forms rather than (0, 1)-forms. We can always twist the line bundle L⌦k

with the canonical bundle to shift from (0, 1)-forms to (1, 1)-forms. The bundle L⌦k can be expressed as
L⌦k = K

X

+ F
k

where K
X

is the canonical line bundle and

F
k

= L⌦k � K
X

= L⌦k + (K
X

)⇤ = L⌦k + T 1,0

X

.

As we have L⌦k with the metric k' and T 1,0

X

with the metric inherited from the Hermitian metric on X ,
then the metric on F

k

is
k'+  .

Thus, we obtain
section on L⌦k  ! (1, 0) section on F

k

(0, 1)-form on L⌦k  ! (1, 1)-form valued on F
k

.

Since X is a compact Riemann surface, taking k >> 0 big enough we see that the metric of F
k

is strictly
positive. This means:

ic(k'+  ) = i@@̄(k'+  ) = g̃!

with g̃ a strictly positive function. The key is that ' is strictly positive and X is a compact Riemann
surface.

We have finished the first part of the proof. In the next one, we will focus on the open (non-compact)
Riemann surface X\{q

1

, ... , q
n

}, where all the results of the first part also apply.
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The following step is to modify the metric k' of L⌦k so that the problem can be solved. In order to do
so, we will use the following fact: if k' is a metric on L⌦k , then any other metric on L⌦k can be written
as k' + ⌥ where ⌥ is a function. In our case, ⌥ ⌘ M� where M >> 0 is a free-parameter and � is the
subharmonic function in X\{q

1

, ... , q
n

} given by the Green’s function in the holes. We have

ic(M�) = i@@̄(M�) = M i@@̄(�) = Ml 0!

with l 0 a non-negative function.

Thus, the metric k'+M� of L⌦k is strictly positive in X\{q
1

, ... , q
n

}. Then
ic(k'+M�) = i@@̄(k'+M�) = k i@@̄(') +M i@@̄(�) = (kl +Ml 0)!

with l a strictly positive and l 0 a non-negative function.

Therefore, k'+M�+  is also a strictly positive metric on F
k

. This means that

ic(k'+M�+  ) = i@@̄(k'+M�+  ) = g!

with g a strictly positive function.

We use a more general version of Hörmander’s theorem for complete Kähler manifolds –and in particular
for Stein manifolds– which we can find in [4]. Here, we use that a connected Riemann surface is a Stein
manifold if and only if it is open (not-compact). As X is a compact Riemann surface, then X\{q

1

, ... , q
n

}
is an open Riemann surface and therefore X\{q

1

, ... , q
n

}is a Stein manifold.

Theorem 3.10. [4, pp. 38] Let F be a holomorphic line bundle endowed with a metric � over a Riemann
surface M which has some complete Kähler metric. Assume the metric � on F has (strictly) positive
curvature and that ic(�) = i@@̄(�) = g!, with g a strictly positive function and ! is a Kähler metric on
M.

Let ↵ be a @̄-closed (1, 1)-form with values on F . Then there is a (1, 0)-form u with values on F such
that:

@̄u = ↵ and ||u||2  1

g
||↵||2,

provided the right hand side is finite.

We must stress that we do not need to assume that the Kähler metric appearing in the final estimate
is complete, only that the manifold has some complete metric.

Note that if ↵ = s⇠ ⌦ dz̄ , then we have

||u||2 =
Z

M

|u|2e��!  1

g

Z

M

|s|2e��

i

2
dz ^ dz̄ =

1

g
||↵||2.

Remark. Set
M ⌘ X\{q

1

, ... , q
n

},
F ⌘ F

k

= L⌦k + T 1,0

X

, L ⌘ L⌦k ,

� ⌘ k'+M�+  , ↵ ⌘ (f @̄�)⇠ ⌦ dz̄ , s ⌘ f @̄�.

Then there is the correspondence

(1, 1)-form with values on F ⌘ L+ T 1,0

M

 ! (0, 1)-form with values on L

(1, 0)-form with values on F ⌘ L+ T 1,0

M

 ! (0, 0)-form (function) with values on L.
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In particular, we have the following estimate:
Z

X\{q
1

,...,q

n

}
|u|2e�(k'+M�)!  1

g

Z

X\{q
1

,...,q

n

}
|f @̄�|2e�(k'+M�) i

2
dz ^ dz̄ .

Since ' is a smooth function in X , which is compact, ' is bounded above and below in X and, in particular,
in X\{q

1

, ... , q
n

}. Thus there exist C
1

,C
2

such that C
1

 e�k'  C
2

, and we get a new estimate that is
similar to the one we obtained for the Riemann sphere:

C
1

Z

X\{q
1

,...,q

n

}
|u|2e�M�!  C

2

g

Z

X\{q
1

,...,q

n

}
|f @̄�|2e�M� i

2
dz ^ dz̄ .

On the other hand Supp(@̄�) ⇢ S

n

i=1

{z 2 W
i

: � � t�/2  G
i

(z)  �}, and there exists � > 0 such that

i@@̄(M�) � M�!

and so
g � M�,

both on Supp (@̄�). Therefore:

C
1

Z

X\{q
1

,...,q

n

}
|u|2e�M�!  C

2

g

Z

X\{q
1

,...,q

n

}
|f @̄�|2e�M� i

2
dz ^ dz̄

 C
2

M�

Z

Supp(

¯@�)
|f @̄�|2e�M� i

2
dz ^ dz̄

 C
2

M�

Z

[
i

{z2W
i

:��t�/2G

i

(z)�}
|f @̄�|2e�M� i

2
dz ^ dz̄ .

A final remark: this proof does not work for Cn and therefore it cannot be generalized for n-dimensional
complex manifolds with n > 1. This is so because one of the main tools of our method are Green’s functions,
which are subharmonic but not plurisubharmonic, as we would require in the case of several variables.
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Catalunya through PhD grant number

81--727, and the partial support from the

MEC (Spanish Government) through re-

search project number MTM2011-25955.

33http://reportsascm.iec.cat Reports@SCM 1 (2014), 33–38; DOI:10.2436/20.2002.02.3.

Some characterizations of
Howson PC-groups

http://reportsascm.iec.cat


Some characterizations of Howson PC-groups

In [10], the authors study the family of finitely generated partially commutative groups for which the fixed
points subgroup of every endomorphism is finitely generated. Concretely, they characterize this family as
those groups consisting in (finite) free products of finitely generated free-abelian groups.

In this note we provide an elementary proof for two extra characterizations of this same family, namely:
being Howson, and being a limit group. Moreover, we observe that, for some of the properties, no restriction
in the cardinal of the generating set is needed, and the result holds in full generality (i.e. for every — possibly
infinitely generated — partially commutative group).

1. Preliminaries

We call partially commutative groups (PC-groups, for short) the groups that admit a presentation in which
all the relations are commutators between generators, i.e. a presentation of the form hX |R i, where R is
a subset of [X ,X ] (the set of commutators between elements in X ).

We can represent this situation in a very natural way through the (simple) graph � = (X ,E ) having
as vertices the generators in X , and two vertices x , y 2 X being adjacent if and only if its commutator
[x , y ] belongs to R ; then we say that the PC-group is presented by the graph �, and we denote it by h � i.
Recall that a simple graph is undirected, loopless, and without multiple edges; so, � is nothing more than
a symmetric and irreflexive binary relation in X .

A subgraph of a graph � = (X ,E ) is said to be full if it has exactly the edges that appear in � over
the same vertex set, say Y ✓ X . Then, it is called the full subgraph of � spanned by Y , and we denote it
by �[Y ]. If � has a full subgraph isomorphic to a certain graph ⇤, we will abuse the terminology and say
that ⇤ is (or appears as) a full subgraph of �; we denote this situation by ⇤ 6 �. When none of the graphs
belonging to a certain family F appear as a full subgraph of �, we say that � is F-free. In particular, a
graph � is ⇤-free if it does not have any full subgraph isomorphic to ⇤.

It is clear that every graph � presents exactly one PC-group; that is, we have a surjective map � 7! h � i
between (isomorphic classes of) simple graphs and (isomorphic classes of) PC-groups. A key result proved
by Droms in [5] states that this map is, in fact, bijective. Therefore, we have an absolutely transparent
geometric characterization of isomorphic classes of PC-groups: we can identify them with simple graphs.

This way, the PC-group corresponding to a graph with no edges is a free group, and the one corre-
sponding to a complete graph is a free-abelian group (in both cases, with rank equal to the number of
vertices). So, we can think of PC-groups as a generalization of these two extreme cases including all the
intermediate commutativity situations between them.

Similarly, disjoint unions and joins of graphs (i.e. disjoint unions with all possible edges between distinct
constituents added) correspond to free products and weak direct products of PC-groups, respectively. So,
for example, the finitely generated free-abelian times free group Zm ⇥ Fn is presented by the join of a
complete graph of order m and an edgeless graph of order n.

All these facts are direct from definitions, and make the equivalence between the conditions in the
following lemma almost immediate as well.

Lemma 1.1. Let � be an arbitrary simple graph, and h � i the corresponding PC-group. Then, the following
conditions are equivalent:

(i) the path on three vertices P3 is not a full subgraph of � (i.e. � is P3-free),

(ii) the reflexive closure of � is a transitive binary relation,
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(iii) � is a disjoint union of complete graphs,

(iv) h � i is a free product of free-abelian groups.

The next lemma, for which we provide an elementary proof, is also well known. We will use it in the
proof of Theorem 2.1.

Lemma 1.2. Let � be an arbitrary simple graph, and Y a subset of vertices of �. Then, the subgroup of
h � i generated by Y is isomorphic to the PC-group presented by �[Y ].

Proof. Let X be the set of vertices of � (then Y ✓ X ), and consider the following two homomorphisms:

h �[Y ] i ↵�! h � i
y 7�! y

, h � i ⇢�! h �[Y ] i
Y 3 y 7�! y

X \ Y 3 x 7�! 1

.

It is clear that both ↵ and ⇢ are well defined homomorphisms (they obviously respect relations). More-
over, note that the composition ↵⇢ (↵ followed by ⇢) is the identity map on h �[Y ] i. Therefore, ↵ is a
monomorphism, and thus h �[Y ] i is isomorphic to its image under ↵, which is exactly the subgroup of h � i
generated by Y , as we wanted to prove.

A group is said to satisfy the Howson property (or to be Howson, for short) if the intersection of any
two finitely generated subgroups is again finitely generated. It is well known that free and free-abelian
groups are Howson (see, for example, [1] and [6] respectively).

However, not every PC-group is Howson: for example, a free-abelian times free group (studied in [4])
turns out to be Howson if and only if it does not have Z⇥ F2 as a subgroup. So, it is a natural question
to ask for a characterization of Howson PC-groups, and we will see in Theorem 2.1 that the very same
condition (not containing Z⇥ F2 as a subgroup) works for a general PC-group.

For limit groups there are lots of di↵erent equivalent definitions. We shall use the one using fully
residual freeness (see [12] for details): a group G is fully residually free if for every finite subset S ✓ G
such that 1 /2 S , there exist an homomorphism ' from G to a free group such that 1 /2 '(S). Then, a
limit group is a finitely generated fully residually free group. From this definition, it is not di�cult to see
that both free and free-abelian groups are fully residually free, and that subgroups and free products of
fully residually free groups are again fully residually free.

2. Characterizations

As proved by Rodaro, Silva, and Sykiotis [10, Theorem 3.1], if we restrict to finitely generated PC-groups,
Lemma 1.1 describes exactly the family of those having finitely generated fixed point subgroup for every
endomorphism (or equivalently, those having finitely generated periodic point subgroup for every endomor-
phism).

In the following theorem, we provide two extra characterizations for the PC-groups described in
Lemma 1.1 (including the infinitely generated case). For completeness in the description, we summa-
rize them in a single statement together with the conditions discussed above.
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Theorem 2.1. Let � be an arbitrary (possibly infinite) simple graph, and h � i the PC-group presented by
�. Then, the following conditions are equivalent:

(a) h � i is fully residually free,

(b) h � i is Howson,

(c) h � i does not contain Z⇥ F2 as a subgroup,

(d) h � i is a free product of free-abelian groups.

Moreover, if � is finite, then the following additional conditions are also equivalent:

(e) For every ' 2 End h � i, the subgroup Fix' = {g 2 h � i : '(g) = g} of fixed points of ' is finitely
generated.

(f) For every ' 2 End h � i, the subgroup Per' = {g 2 h � i : 9n � 1 'n(g) = g} of periodic points of
' is finitely generated.

Proof. (a) ) (b). Dahmani obtained this result for limit groups (i.e. assuming h � i finitely generated)
as a consequence of them being hyperbolic relative to their maximal abelian non-cyclic subgroups (see [3,
Corollary 0.4]). We note that the finitely generated condition is superfluous for this implication since the
Howson property involves only finitely generated subgroups, and every subgroup of a fully residually free
group is again fully residually free.

(b) ) (c). It is enough to prove that the group Z ⇥ F2 does not satisfy the Howson property. The
following argument is described as a solution to exercise 23.8(3) in [1] (see also [4]). Indeed, if we write
Z⇥ F2 = h t |�i ⇥ h a, b |�i, then the subgroups

H = ha, bi = F2 6 Z⇥ F2, and

K = hta, bi = {w(ta, b) | w 2 F2} = {t |w |aw(a, b) | w 2 F2} 6 Z⇥ F2

are both finitely generated, but its intersection

H \ K = {t0w(a, b) | w 2 F2, |w |a = 0} = hhbiiF2 = ha�kbak , k 2 Zi

is infinitely generated, as you can see immediately from its Stallings graph

. . .
a
//•

b

⌧⌧
a
//•

b

⌧⌧
a
//•

b

⌧⌧
a
//�

b

��
a
//•

b

⌧⌧
a
//•

b

⌧⌧
a
//•

b

⌧⌧
a
// . . .

(see [11] and [8]), or using this alternative argument: suppose H \K is finitely generated, then there exists
m 2 N such that am+1ba�(m+1) 2 ha�kbak , k 2 [�m,m]i, and thus am+1 equals the reduced form of
some prefix of w(amba�m, ... , b, ... , a�mbam), for some word w . However, the sum of exponents of a in
any such prefix must be in [�m,m], which is a contradiction.

Note that both H and K are free groups of rank two whose intersection is infinitely generated. This fact,
far from violating the Howson property of free groups, means that both H and K are not simultaneously
contained in any free subgroup of Z⇥ F2.
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(c) ) (d). From Lemma 1.2, if h � i does not contain the group Z⇥F2 (which is presented by P3) as
a subgroup, then P3 is not a full subgraph of �. Equivalently, h � i is a free product of free-abelian groups
(see Lemma 1.1).

(d) ) (a). This is again clear, since free-abelian groups are fully residually free, and free products of
fully residually free groups are again fully residually free. Note here, that no cardinal restriction is needed;
neither for the rank of the free-abelian groups, nor for the number of factors in the free product, since the
definition of fully residually freeness involves only finite families.

Finally, for the equivalence between (d), (e) and (f ) under the finite generation hypothesis, see [10,
Theorem 3.1].

Observe that an immediate corollary of Lemma 1.2 is that the PC-group presented by any full subgraph
⇤ 6 � is itself a subgroup of the PC-group presented by �, i.e. for every pair of graphs �,⇤,

⇤ 6 � ) h⇤ i 6 h � i .

This property provides a distinguished family of subgroups (which we will call visible) of any given PC-
group. More precisely, we will say that a PC-group h⇤ i is a visible subgroup of a PC-group h � i — or
that h⇤ i is visible in h � i — if ⇤ appears as a full subgraph of �.

Of course, visible subgroups are PC-groups as well, but not every partially commutative subgroup of a
PC-group is visible (for example, F3 is obviously not visible in F2).

Note that although “visibility” is a relative property (a PC-group can be visible in a certain group, and
not in another one), there exist PC-groups which are visible in every PC-group in which they appear as
a subgroup; we will call them explicit. That is, a given PC-group h⇤ i (or the graph ⇤ presenting it) is
explicit if for every graph �,

⇤ 6 � , h⇤ i 6 h � i .

For example, it is straightforward to see that the only explicit edgeless graphs are the ones with zero,
one, and two vertices: the first two cases are obvious, and for the third one, note that if F2 6 G then G
can not be abelian. Finally, for n � 3, it is su�cient to note (again) that Fn is not a visible subgroup of F2.

At the opposite extreme, a well-known result [9, Lemma 18] states that the maximum rank of a free-
abelian subgroup of a f.g. PC-group h � i coincides with the maximum size of a complete subgraph in �.
An immediate corollary is that every (finite) complete graph is explicit.

In the last years, embedability between PC-groups has been a matter of growing interest and research
(see [7], [9] and [2]). In particular, new examples of explicit graphs are known, such as the square C4

(proved by Kambites in [7]), or the path on four vertices P4 (proved by Kim and Koberda in [9]).

To end with, we just remark that our characterization theorem (Theorem 2.1) immediately provides a
new member of this family.

Corollary 2.2. The path on three vertices P3 is explicit.

Acknowledgements. I want to express my gratitude to Enric Ventura for his constant support, and his
insightful comments and suggestions.
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1. Introduction and definitions

1.1 Motivation

In this paper, we study the gossiping problem, in which we disseminate information among an intercom-
munication network. Initially, each node of the network has some private piece of information. The nodes
exchange information through the network, in consecutive rounds, where in each round they can receive
or send information, with some constraints according to the communication protocol. The information
exchange is complete when each node has learned every piece of information. A gossiping algorithm de-
cides at each round who communicates with whom. We want to find an algorithm which completes the
exchange of information in a minimal number of rounds.

We study two communication protocols, the vertex-disjoint path (VDP) mode, and the edge-disjoint
path (EDP) mode. In these modes, a node can communicate with another node if they are connected by
a path. In every round, the gossiping algorithm selects paths between pairs of nodes that communicate
with each other. In the VDP mode, the selected paths need to be vertex-disjoint, that is, they do not
have any vertex in common. Similarly, in the EDP mode, the selected paths need to be edge-disjoint, that
is, they do not have any edge in common. Moreover, a node can communicate with only one other node
during one round. We measure the complexity of a gossiping algorithm by the number of rounds it needs
to run. We call the gossip complexity of a network the minimal number of rounds needed by any gossiping
algorithm to complete the exchange of information. We choose to study VDP and EDP modes because
they are at the same time realistic, and powerful enough to achieve relatively fast gossiping. They have
been introduced in [1]. They are widely used in real life applications, and have been extensively studied,
see [2, 7, 8, 9, 13, 14]. Each of these modes of communication admits two different versions; they can
either be a full duplex or a half duplex mode. In the full duplex version, when two nodes communicate
with each other along a path, they both send and receive their information at the same time, whereas for
the half duplex version, only one node sends its information and the other receives it. Full duplex modes
are well suited for undirected graphs, which are the graphs we study in this paper. Therefore, we only deal
with the full duplex version of the VDP and EDP modes.

In order to have good gossip complexity, the intercommunication network needs to have good structural
properties. That is why we focus on Cayley graphs, and on circulant graphs, which are a subclass of Cayley
graphs. These are popular network topologies.

1.2 Synopsis

In Section 2 we give a general lower bound for the gossip complexity of any graph, in terms of the
isoperimetric function of the graph. It is a generalization of the lower bound obtained by Klasing [10].
Thanks to this lower bound, we prove that our gossiping algorithms are optimal, up to a log log(n) factor,
where n is the order of the graph.

In Section 3, we recall some notions and known results on gossiping. In particular we recall the gossip
complexity of the hypercube graph, which is one of the best graphs for the gossiping problem, that is,
its gossip complexity is less than the gossip complexity of any other graph. Knödel describes an optimal
gossiping algorithm for the hypercube in [11]. Therefore, naturally, for graphs that have a similar structure to
the hypercube, we try to use a similar gossiping algorithm. Indeed, many graphs embed into the hypercube
graphs. We define the concept of embedding in the same Section 3. With this tool, we can simulate the
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gossiping algorithm of the hypercube graph in many other graphs, and get almost optimal algorithms. This
is done for cube-connected cycles and butterfly networks by Hromkovic, Klasing and Stöhr [7], for the grid
by Hromkovic, Klasing, Stöhr and Wagener [8], or more recently for circulant graphs (whose definition is
given in Section 4) by Mans and Shparlinski [15]. These are standard graphs, structurally close to the
hypercube. In [15], the gossiping algorithm given by the authors only works for the subclass of circulant
graphs whose generator set is of size two.

In Section 4, we give an algorithm which works in almost optimal time for a wider subclass of circulant
graphs, in particular for circulant graphs whose generator set is of any size. Finally, we extend the gossiping
algorithm working for the circulant graphs to a more general class of Cayley graphs.

1.3 Definitions and notations

We recall here some basic definitions of graph theory. Throughout, [n] denotes the set {1, ... , n}. Let
G be a graph. Except if mentioned explicitly, the graphs we consider are undirected and connected. We
denote by V (G ) its set of vertices, and by E (G ) its set of edges. A path in G is a sequence of distinct
vertices u0u1 · · · ul , where for all i in {0, ... , l − 1}, {ui , ui+1} is an edge of G . The length of the path,
l , may be equal to 0, in which case the path is reduced to the vertex u0. We denote by P(G ) the set of
all paths in G . We say that an edge e ∈ E (G ) belongs to the path p ∈ P(G ) if we have p = u0u1 · · · ul

and e = {ui , ui+1}, for some i ∈ {0, ... , l − 1}. Similarly, u belongs to p if we have u = ui for some
i ∈ {0, ... , l}. We say that two paths p and p′ of P(G ) are vertex-disjoint if and only if there is no vertex
u of V (G ) that belongs to p and p′. Similarly, they are edge-disjoint if and only if there is no edge e
in E (V ) belonging to p and p′. For any path p = u0 · · · ul ∈ P(G ), we call the vertices u0 and ul the
extremities of p.

Here we give the definition of a broadcast algorithm, an accumulation algorithm, and a gossiping
algorithm, which are of fundamental importance. A communication algorithm A for the VDP mode (resp.
EDP mode) in the graph G is defined by a sequence of t(A) rounds E1, E2, ... , Et(A), with a round Ei

being a set of pairwise vertex-disjoint paths of G (resp. pairwise edge-disjoint paths of G ). The integer
t(A) is the complexity of A. Moreover, each node of V (G ) can not be the extremity of more than one
path of Ei . For every vertex v ∈ V (G ) and for all r ∈ {0, ... , t(A)}, we denote by Iv (r) the set of
information known to v after the r -th round of algorithm A. Iv (r) is defined recursively by Iv (0) = {v},
and Iv (r) = Iv (r − 1) ∪ Iw (r − 1) if there exists a path p of the form p = v , ... , w or p = w , ... , v in Er ;
Iv (r) = Iv (r − 1) otherwise.

A is a broadcast algorithm for the set of vertices U ⊆ V (G ) if for all v in V (G ), we have U ⊆ Iv (t(A)).
Similarly, A is an accumulation algorithm for the set of vertices U ⊆ V (G ) if

⋃
u∈U Iu(t(A)) = V (G ). A is

a gossiping algorithm if for all v in V (G ), we have Iv (t(A)) = V (G ). In other words, a gossiping algorithm
performs communication between the nodes in such a way that at the end of the algorithm, every node
knows the secret of every other node. We call the gossip complexity of a graph the minimal number of
rounds to achieve the gossiping in this graph. More precisely, if we denote by AG

VDP the set of all gossiping
algorithms for the VDP mode in G (resp. AG

EDP for the EDP mode), the gossip complexity of G for the
VDP mode, gVDP(G ), is

gVDP(G ) = min
A∈AG

VDP

{t(A)} , (resp. gEDP(G ) = min
A∈AG

EDP

{t(A)}).

We define similarly the broadcast complexity and the accumulation complexity for a set of vertices U ⊆
V (G ) of a graph G , which we denote, respectively, by bVDP(G , U) and aVDP(G , U) for the VDP mode,
and bEDP(G , U) and aEDP(G , U) for the EDP mode.
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2. A lower bound for the gossip complexity

In this section, we give a general lower bound on the gossip complexity of any graph for the VDP and EDP
modes. In [8], J. Hromkovic et al. prove a lower bound on the gossip complexity of any graph, depending on
its bisection width. We can actually prove a more general lower bound, which depends on the isoperimetric
number of the graph. We first give the definition of the two notions of bisection width and isoperimetric
number of a graph. Then, in Theorem 2.1, we generalize the lower bound of J. Hromkovic et al. [8].
In [10], R. Klasing gives a slightly better lower bound on the gossip complexity of a graph in terms of its
bisection width. It is also possible to generalize this lower bound, and obtain Theorem 2.2.

Let G = (V , E ) be a graph. For every U ⊆ V , we denote by ∂in(U) the inner vertex-boundary of U,
defined by

∂in(U) =
{

u ∈ U : ∃v ∈ V \ U, {u, v} ∈ E
}

.

Similarly, we denote by e(U) the inner edge-boundary of U, defined by

e(U) =
{
{u, v} ∈ E : u ∈ U, v ∈ V \ U

}
.

The vertex bisection width vbw(G ) of G is defined by

vbw(G ) = min

{
|∂in(U)| : U ⊂ V ,

⌊
|V |
2

⌋
≤ |U| ≤

⌈
|V |
2

⌉}
.

Similarly, the edge bisection width ebw(G ) of G is defined by replacing |∂in(U)| by |e(U)| in the above
definition. More generally, the vertex isoperimetric number of G is

vi(G , t) = min
{
|∂in(U)| : U ⊂ V , |U| = t

}
,

and the edge isoperimetric number ei(G , t) is obtained by replacing |∂in(U)| by |e(U)| in the above defi-
nition. Intuitively, the isoperimetric number tells us if there is a bottleneck in a given graph, which would
imply a high gossip complexity.

We can now state the theorem for the VDP mode.

Theorem 2.1. Let G = (V , E ) be a graph and (V1, V2) a partition of its vertex set into parts of size
|V1| = n1 and |V2| = n2. Let k = |∂in(V1)| and l = |e(V1)|. Then

gVDP(G ) ≥ log(n1n2)− log(k)− log(log(n1))− 2

and

gEDP(G ) ≥ log(n1n2)− log(l)− log(log(n1))− 2.

In particular, the inequality holds for k = maxt vi(G , t), and l = maxt ei(G , t).

We give the proof of Theorem 2.1 for the VDP mode. The proof for the EDP mode is obtained similarly,
replacing the inner boundary ∂in(V1) by the edge boundary e(V1).

Proof. Let G = (V , E ) be a graph, (V1, V2) a partition of its vertex set into parts of size |V1| = n1 and
|V2| = n2, and k = |∂in(V1)|. The idea of the proof is to estimate how much information can flow from
V1 to V2.
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Let A = E1, ... , Et(A) be a gossiping algorithm for G . For all r ∈ {0, ... , t(A)}, Iv (r) is the information
known by v after the rth round, as defined in Section 1.3. We define I 1v (r) as I 1v (r) := Iv (r) ∩ V1, and
I (r) :=

⋃
v∈V2

I 1v (r). The value I (r) represents the information that has gone from V1 to V2 during the
first r rounds. Since A is a gossiping algorithm, every node v ∈ V2 knows the information of all nodes
in V1 after t(A) rounds, that is, it must be

I (t(A)) ≥ |V1| · |V2| = n1n2. (1)

Now we give an upper bound on I (t(A)). For all r ∈ {0, ... , t(A)}, we define

Î (r) :=
⋃

v∈∂in(V1)

I 1v (r).

The value Î (r) represents the amount of information that can go from V1 to V2 in round r . We observe
that the amount of information of a node can be at most doubled in each round. That is, for all v in V1

and for all r in {0, ... , blog(n1)c}, we have I 1v (r) ≤ 2r . Therefore, we have

Î (r) ≤ k min(2r , n1). (2)

The amount of information from V1 already present in V2 in round r can be at most doubled in round
r + 1:

I (r + 1) ≤ 2I (r) + Î (r). (3)

Combining equations (2) and (3), we get:

• For all 0 ≤ r ≤ log(n1), I (r + 1) ≤ 2I (r) + k2r .

• For all log(n1) ≤ r , I (r + 1) ≤ 2I (r) + kn1.

By induction, I (r) ≤ r · k · 2r−1 for all 0 ≤ r ≤ log(n1). Moreover, for all r > log(n1), we obtain that
I (r) ≤ k · 2r−1 (log(n1) + 1)− n1k

2 . In particular, for r = t(A), equation (1) yields

n1n2 ≤ I (r) ≤ k · 2t(A)−1(log(n1) + 1).

Therefore, by taking logarithms to both sides of the inequality, we get

log(n1n2)− log(k)− log(log(n1))− 2 ≤ t.

The result for the EDP mode can be obtained similarly.

In [10], R. Klasing proves that we can improve the lower bound of J. Hromkovic et al. [8]. More
precisely, he shows that we have a gossip complexity of at least 2 log(n) − log(k) − log(log(k)) + O(1)
for any graph of order n and bisection width k . We can generalize the lower bound in [8] to obtain the
following theorem.

Theorem 2.2. Let G = (V , E ) be a graph and (V1, V2) a partition of its vertex set, of size |V1| = n1 and
|V2| = n2. We denote by k = |∂in(V1)| and l = |e(V1)|. Then

gVDP(G ) ≥ log(n1n2)− log(k)− log(log(k)) + O(1)

and
gEDP(G ) ≥ log(n1n2)− log(l)− log(log(l)) + O(1).

In particular, the inequality holds for k = maxt vi(G , t), and l = maxt ei(G , t).

We omit the proof due to lack of space. It can be found in [6].
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3. Basic examples, embeddings and three phase
algorithms

In this section we recall the gossip complexity of some basic graphs, including the hypercube. Then we
present the concept of embedding, thanks to which we can extend the gossiping algorithm for the hypercube
to other similar graphs. Finally we present the so-called three phase algorithm strategy which will prove
useful later on.

3.1 Basic examples

We first give a general lower bound for the gossip complexity in any graph.

Lemma 3.1. For any graph G = (V , E ), for all v in V and for all 0 ≤ r ≤ blog(n)c, |Iv (r)| ≤ 2r . In
particular,

gVDP(G ) ≥ gEDP(G ) ≥ log n.

Proof. By induction on r . Let v ∈ V . For r = 0 we have |Iv (0)| = 1. For all r < blog(n)c, either there
exists w in V such that |Iv (r + 1)| = |Iv (r) ∪ Iw (r)| ≤ 2r+1, or |Iv (r + 1)| = |Iv (r)| ≤ 2r ≤ 2r+1.

The hypercube is a widely used graph which is known to have good communication properties, especially
for the gossiping problem. We recall its definition here.

Definition 3.2. For all k ≥ 2, d ≥ 1, the k-ary hypercube of dimension d , H(k, d), is the graph defined by
the set of vertices V = {0, ... , k−1}d , and the set of edges E such that ∀α = a1 · · · an, β = b1 · · · bn ∈ V ,
{α,β} ∈ E if and only if ∃i ∈ {1, ... , d} such that bi 6= ai and, ∀j ∈ {1, ... , d}\{i}, bj = aj .

Theorem 3.3 (Hromkovic, Klasing, Stöhr, [7]). For all k ≥ 2 and d ≥ 1,

ddlog(k)e ≤ gEDP(H(k, d)) ≤ gVDP(H(k , d)) ≤ d(dlog(k)e+ 1).

According to this theorem, the hypercube is the best graph for gossiping, together with the complete
graph. For the latter, we have the following result by Knödel [11].

Theorem 3.4 (Knödel [11]). For all n ∈ N, let Kn be the complete graph of size n. Then

dlog(n)e ≤ gVDP(Kn) = gEDP(Kn) ≤ dlog(n)e+ 1.

3.2 Embeddings

We have seen that we can gossip in a really efficient way in the hypercube. In many other graphs, we
can use similar algorithms to gossip efficiently. More generally, many graphs “contain” other subgraphs in
which we know how to gossip efficiently. In order to transfer results from the subgraph to the super-graph,
we use the concept of embedding.

We give the definitions of an embedding, its load, and its vertex and edge-congestion, which can be
found in Kolman [12]. We also introduce new definitions, such as vertex and edge-congestion for an
algorithm A, which will be useful in the next section.
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• Let G and H be two undirected graphs. An embedding of the graph G into the graph H is a
mapping f of the vertices of G into the vertices of H, together with a mapping g of edges of G into
paths in H, such that g assigns to each edge {u, v} ∈ E (G ) a path from f (u) to f (v) in P(H).

• The load of the embedding is the maximum number of vertices of G mapped to a single vertex of H:

load(f , g) = max
v∈V (H)

∣∣{u ∈ V (G ) : f (u) = v}
∣∣.

The edge-congestion econg(f , g) is defined by

econg(f , g) = max
e∈E(H)

∣∣{e ′ ∈ E (G ) : e belongs to g(e ′)}
∣∣.

Similarly, the vertex-congestion vcong(f , g) is defined by

vcong(f , g) = max
u∈V (H)

∣∣{e ′ ∈ E (G ) : u belongs to g(e ′)}
∣∣.

• We do not need all paths in g(E (G )) to be pairwise vertex or edge disjoint, because not all edges are
used at the same time by a communication algorithm. That is why we introduce a weaker notion.
Let A = E1, E2, ... , Et(A) be a communication algorithm.

For all e ∈ E (G ) and for all r ∈ {1, ... , t(A)}, we say that e is active in round r if and only if there
exists a path p ∈ Er such that e belongs to p. We denote by AE(r) the set of active edges in round r .

In the same way, for all u ∈ V (G ), we say that u is active in round r if and only if there exists a
path p ∈ Er such that u belongs to p. We denote by AV(r) the set of active vertices in round r .

We define the vertex congestion for algorithm A, vcong
A(f , g), by

vcong
A(f , g) = max

r∈{1,...,t(A)},u∈V (H)

∣∣{e ′ ∈ AE(r) : u belongs to g(e ′)}
∣∣.

Similarly,
econg

A(f , g) = max
r∈{1,...,t(A)},e∈E(H)

∣∣{e ′ ∈ AE(r) : e belongs to g(e ′)}
∣∣.

Finally, we define loadA(f , g) by

loadA(f , g) = max
r∈{1,...,t(A)},v∈V (H)

∣∣{u ∈ AV(r) : f (u) = v}
∣∣.

With the above definitions we can now state our theorem. This theorem in implicit in [7, 8, 9, 15].

Theorem 3.5. Let G = (V (G ), E (G )) and H = (V (H), E (H)) be two graphs. If A is a gossiping algorithm
for G in the VDP mode (resp., EDP mode), which runs in t(A) rounds; and if f ,g is an embedding of G
into H such that loadA(f , g) = 1, and vcong

A(f , g) = 1 (resp. econg
A(f , g) = 1), then we can gossip

among the set of vertices f (V (G )) in H in less than t(A) rounds in the VDP mode (resp., the EDP mode).

Proof. We extend the function g : E (G )→ P(H) on the paths of G via

g(u0u1 · · · ul) = g({u0, u1})g({u1, u2}) · · · g({ul−1ul})

for all u0u1 · · · ul ∈ P(G ), i.e., we concatenate the images of all edges of the path u0u1 · · · ul .
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Let A = E1E2 · · ·Et(A) be the gossiping algorithm of G for the VDP mode. We construct an algorithm A′

which performs the gossiping among f (V (G )) in H in t(A) rounds as follows: whenever the vertex u ∈ V (G )
communicates with v ∈ V (G ) through the path p ∈ P(G ), f (u) ∈ V (H) communicates with f (v) ∈ V (H)
through the path g(p) ∈ P(H). It is well defined because f (u) 6= f (v), since loadA(f , g) = 1. Let
r ∈ {1, ... , t(A)} such that Er = {p1, ... , pl}, l ≥ 1. Since vcong

A(f , g) = 1, {g(p1), ... , g(pl)} is a set of
vertex-disjoint paths of P(H). At the end of algorithm A′, for each vertex u ∈ V (G ),

If (u)(t(A)) =
⋃

v∈V (G),f (v)=f (u)

f (Iv (t(A)),

so If (u)(t(A)) = f (V (G )). Therefore A′ performs the gossiping among f (V (G )) properly for the VDP
mode. An analogous argument works for the EDP mode.

3.3 Three phases algorithm

In most of the hypercube-like graphs, we use a gossiping algorithm that first accumulates the information
of the entire graph into a subgraph, then gossip in the subgraph as in the hypercube, and finally broadcast
the information to the whole graph. This is called a three-phase algorithm.

Definition 3.6. We say a gossiping algorithm is a three-phase algorithm if it performs an accumulation
phase, then a gossiping phase, and finally a broadcast phase:

1. Accumulation phase: G is divided into connected components (called accumulation components),
each component containing exactly one accumulation node. This node accumulates the information
from the nodes lying in its component.

2. Gossip phase: Let a(G ) be the set of all accumulation nodes in G . A gossiping algorithm is performed
among the nodes in a(G ). All nodes in V (G ) − a(G ) are considered to have no information, and
they are only used to build disjoint paths between receivers and senders from a(G ).

3. Broadcast phase: Every node in a(G ) broadcasts the information to its component.

Here we present a useful lemma on the number of rounds needed to accumulate all the information of
the path of length n ∈ N∗ into one vertex at the end of the path.

Lemma 3.7 (Feldmann, Hromkovic, Monien, Madhavapeddy and Mysliwietz, [4]). For all n ∈ N∗, let Pn

be the path of length n, i.e the graph with vertex set {0, ... , n − 1} and edge set E = {{i , i + 1}, i ∈
{0, ... , n − 2}}. Then

bVDP(Pn, {0}) = aVDP(Pn, {0}) = bEDP(Pn, {0}) = aEDP(Pn, {0}) ≤ dlog(n)e.

4. Gossiping in circulant graphs

In this section, we present the main results of this paper. Mans and Shparlinski [15] gave an optimal
gossiping algorithm for some circulant graphs whose generator set is of size two. We exhibit a gossiping
algorithm for more general circulant graphs whose generator set can be of any size.
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We recall here the definitions of Cayley graphs and circulant graphs, which are a particular type of
Cayley graphs.

Let (G , +) be an additively written group, and let S ⊆ G be a subset of G . The Cayley graph Γ(G , S)
is the graph with vertex set V = G and set of arcs E such that for all u, v ∈ V , (u, v) ∈ E if and only if
there exists s ∈ S such that v = u + s. If Γ(G , S) is to be connected, S must be a generating set of G . If
we want Γ(G , S) to be undirected, S must be symmetric, i.e. of the form S = {±s1, ... ,±sr}.

For example, for k ≥ 2 and d ≥ 1, the k-ary hypercube of dimension d , H(k , d), is the Cayley graph
Γ(Zd

k , S), with S =
⋃

i∈[d ]{±λ · ei : λ ∈ [k − 1]}, where ei is the vector whose coordinates are all zero
except for the i-th coordinate, which is 1. We can generalize Theorem 3.3 for the k-ary hypercube of
dimension d in the following way.

Theorem 4.1. Let d ≥ 1, k1, k2, ... , kd ≥ 2. Let S =
⋃

i∈[d ]{±λ · ei : λ ∈ [ki − 1]}. Then∑
i∈[d ]

dlog(ki )e ≤ gEDP

(
Γ(Zk1 × Zk2 · · · × Zkd , S)

)
≤ gVDP

(
Γ(Zk1 × Zk2 · · · × Zkd , S)

)
≤
∑
i∈[d ]

(
dlog(ki )e+ 1

)
.

Proof. The lower bound comes from Lemma 3.1. For the upper bound, we use Algorithm 1.

Algorithm 1 Gossip
(

Γ
(∏d

i=1 Zki , S
))

for i = 1 to d do
for all α ∈

∏i−1
j=1 Zkj and β ∈

∏d
l=i+1 Zkl do in parallel

gossip in Lα,β = {αmβ : m ∈ {0, ... , ki − 1}}
end do in parallel

end for

procedure Gossip in Lα,β = {αmβ : m ∈ {0, ... , ki − 1}}
do in parallel

Gossip in {αmβ : m ∈ {0, ... ,
⌊
ki
2

⌋
− 1}} and

Gossip in {αmβ : m ∈ {
⌊
ki
2

⌋
, ... , ki − 1}}

end do in parallel

for l = 0 to
⌊
ki
2

⌋
− 1 do in parallel

exchange information between αlβ and α(m − l − 1)β
end do in parallel

end procedure

For all i ∈ [d ], and for all α ∈
∏i−1

j=1 Zkj , β ∈
∏d

l=i+1 Zkl , the subgraph Lα,β induced by the set of
vertices {αmβ : m ∈ {0, ... , ki − 1}} is a clique, so we can gossip in Lα,β with the procedure Gossip
of Algorithm 1. This procedure uses the algorithm of the complete graph Kki , which works in at most
dlog(ki )e + 1 rounds according to Theorem 3.4. So the total number of rounds needed to gossip in
Γ(Zk1 × Zk2 · · · × Zkd , S) is at most

∑
i∈[d ](dlog(ki )e+ 1).
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When G = Zn is the cyclic group and S = −S ⊆ Zn is a symmetric subset of Zn, the Cayley graph
Γ(Zn, S) is called a circulant graph, and will be denoted by C (n, S). In the next theorem, we give a lower
bound of the gossip complexity for any circulant graph using Theorem 2.2. The result was obtained by
Mans and Shparlinski [15].

Theorem 4.2. For all n,r ∈ N∗, for all S = {±s1, ... ,±sr} ⊆ Zn such that s1 ≤ s2 ≤ · · · ≤ sr ,

gVDP(C (n, S)) ≥ 2 log(n)− log(sr )− log(log(sr )) + O(1)

and

gEDP(C (n, S)) ≥ 2 log(n)− log(rsr )− log(log(rsr )) + O(1).

Proof. We number the nodes from 0 to n− 1. Let V1 = {0, ... , bn2c− 1} and V2 = {bn2c, ... , n− 1}. Then
∂Gin (V1) ⊆ {0, ... , sr − 1} ∪ {bn2c − sr , ... , bn2c − 1}, because for all u ∈ {sr , ... , bn2c − sr − 1}, and all v
in V2, we have that v − u > sr mod n, so {u, v} /∈ E . Thus, |∂Gin (V1)| ≤ 2sr . Theorem 2.2 then yields

gVDP(C (n, S)) ≥ log
(⌊n

2

⌋
·
⌈n

2

⌉)
− log(sr )− log(log(sr )) + O(1)

≥ 2 log(n)− log(sr )− log(log(sr )) + O(1).

It is easy to check that |e(V1)| ≤ 2
∑r

i=1 si ≤ 2rsr ; for further details, see [15]. Theorem 2.2 yields

gEDP(C (n, S)) ≥ log
(⌊n

2

⌋
·
⌈n

2

⌉)
− log(2rsr )− log(log(2rsr )) + O(1)

≥ 2 log(n)− log(rsr )− log(log(rsr )) + O(1).

This concludes the proof.

For particular instances of S , we know an algorithm which matches the previous lower bound. For

instance, when S =
{
±1,±n1/r , ... ,±n(r−1)/r}, then C (n, S) admits the grid Gr(n

1
r , r) as a spanning

subgraph. So we can apply the algorithm of the grid of [8] which matches the lower bound. But in the
general case, we do not know whether the previous lower bound is tight. In this paper, we find an algorithm
for a general class of circulant graphs, which (almost) matches the lower bound. Such an approach can
be found in [15], where B. Mans and I. E. Shparlinski find an (almost) optimal gossiping algorithm for
circulant graphs where r = 2. More precisely, they prove that if S = {±1,±s2} and s2 ≤ 2bp/s2c, then the
lower bound of Theorem 4.2 is tight. In fact, they give an algorithm which performs in (almost) optimal
time. We have generalized this approach to arbitrary r .

Theorem 4.3. Let n ∈ N∗, and C (n, S) be a circulant graph with generating set S = {±s1, ... ,±sr}. If
s1 = 1, s1 < s2 < · · · < sr and

⌈ si+1

si

⌉
≤ 2 n

sr
for all i ∈ [r − 1], then

2 log(n)− log(sr ) + 2r ≥ gVDP(C (n, S)) ≥ 2 log(n)− log(sr )− log(log(sr )) + O(1)

and

2 log(n)− log(sr ) + 2r ≥ gEDP(C (n, S)) ≥ 2 log(n)− log(rsr )− log(log(rsr )) + O(1).

Proof. We exhibit a three phase algorithm that works in at most 2 log(n) − log(sr ) + 2r rounds for the
VDP mode.
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Accumulation phase:

We number the nodes of C (n, S) from 0 to n− 1, and identify each node with its number. We choose the
accumulation nodes a(G ) to be {0, ... , sr − 1}, and the accumulation components to be

Aj = {i ∈ Zn : i = j mod sr} , for all j ∈ {0, ... , sr − 1} .

All accumulation components are of size at most
⌊
(n − 1)/sr

⌋
+ 1. So the accumulation phase takes

at most
⌈
log
(⌊

(n − 1)/sr
⌋

+ 1
)⌉

many rounds, which in turn is at most log
(
n/sr

)
+ 1.

Gossip phase:

To simplify the proof, we suppose that

si+1

si
= qi ∈ N for all i ∈ [r − 1]. (4)

Let S ′ =
⋃

i∈[r−1]
{
±λ · ei : λ ∈ [qi − 1]

}
. The Cayley graph Γ

(
Zq1 × Zq2 × · · · × Zqr−1 , S ′

)
is

embedded into C (n, S), where f :
∏r−1

i=1 Zqi → Zn is defined for all a1a2 · · · ar−1 ∈
∏r−1

i=1 Zqi by

f (a1a2 · · · ar−1) =
r−1∑
i=1

ai · si ∈ Zn.

Let u = a1 · · · ar−1 be a node in
∏r−1

l=1 Zql , and v = a1 · · · ai−1a′iai+1 · · · ar−1, with ai < a′i . Then
g(u, v) is defined to be the path which goes from vertex f (u) =

∑
j∈[r−1] aj · sj to

∑
j∈[r−1] aj · sj + ta,b · sr

through ta,b chords +sr , then to vertex∑
j∈[r−1]\{i}

aj · sj + a′i · si + ta,b · sr

through a′i − ai chords +si , and finally to vertex∑
j∈[r−1]\{i}

aj · sj + a′i · si

through ta,b chords −sr . We choose ta,b =
⌊
b−a
2

⌋
. For an illustration of the embedding (f , g), see Figure 1.

According to Theorem 3.4, there is a gossiping algorithm A for Γ
(∏r−1

i=1 Zqi , S ′
)

for the VDP mode,

which works in at most
∑r−1

i=1

(
dlog(qi )e + 1

)
≤ log(sr ) + 2(r − 1) rounds. It is easy to check that the

load of the embedding f , g for algorithm A is one. We show that vcong
A(f , g) = econg

A(f , g) = 1. In
Algorithm A, in each round, the exchanges of information are of the form

a = a1 · · · ar−1 ∈
∏r−1

i=1 Zqi exchanges its information with a′ = a1 · · · ai−1a′iai+1 · · · ar−1, with ai < a′i .

Suppose that in the same round,

b = b1 · · · br−1 exchanges its information with b′ = b1 · · · bi−1b′ibi+1 · · · br−1, with bi < b′i .

By the construction of algorithm A (see Algorithm 1), bi < ai and a′i < b′i , or ai < bi and b′i < a′i . So
ta,a′ 6= tb,b′ , and vAcong(f , g) = 1. Therefore, by Theorem 3.5, there is an algorithm A′ that performs the

gossiping in f
(∏r−1

i=1 Zqi

)
= {0, ... , sr − 1} in at most log(sr ) + 2(r − 1) rounds for the VDP mode. A′ is

described in Algorithm 2.
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Figure 1: C (n, S), with S = {±1,±5,±10}

Broadcast phase:

By symmetry, the broadcast phase takes at most log
(
p/sr

)
+ 1 rounds, just like the accumulation phase.

Therefore the total number of rounds needed to gossip in C (n, S) is at most 2 log(n)− log(sr ) + 2r .

In the case where we do not assume condition (4) anymore, we need to slightly modify Algorithm 2,
but the essential arguments remain the same. This concludes the proof of Theorem 4.3.

We have exhibited an algorithm that matches the lower bound on the gossip complexity for some
circulant graphs (up to a log(log(n)) factor, n being the size of the graph). We must note that, even if
the condition for the generating set is a generalization of the one imposed by Mans and Shparlinsky, the
number of generating sets satisfying it is asymptotically small. Thus the problem of providing a gossiping
for circulant graphs is still open.

The results we have found for circulant graphs can be extended to more general Cayley graphs. Let
p be a prime number, d ≥ 1, and S ⊆ Zd

p . We investigate gossiping in Γ(Zd
p , S), and note that circulant

graphs are the particular case where d = 1. We can give an upper bound of the bisection width of these
graphs, and therefore bound their gossip complexity. We do so in Theorem 4.4. In Theorem 4.5, we show
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Algorithm 2 Gossip(C (n, S))

for i = 1 to r − 1 do
for all α ∈

∏i−1
j=1 Zqj and β ∈

∏r−1
l=i+1 Zql , do in parallel

Gossip in Lα,β = {f (αmβ), m ∈ {0, ... , qi − 1}}, where f (a1 ... ar−1) =
∑r−1

i=1 ai · si
end do in parallel

end for
procedure Gossip Lα,β

do in parallel
Gossip

{
f (αmβ), m ∈

{
0, ... ,

⌊qi
2

⌋
− 1
}}

and
Gossip

{
f (αmβ), m ∈

{⌊qi
2

⌋
, ... , r − 1

}}
end do in parallel
for l = 0 to

⌊qi
2

⌋
− 1 do in parallel

exchange information between f (αlβ) and f (α(qi − 1− l)β)
through the path g(αlβ,α(qi − 1− l)β), with g defined in the proof of Theorem 4.3.

end do in parallel
end procedure

that this lower bound is tight (up to a log(log(n)) factor, where n is the size of the graph).

Theorem 4.4. Let S = {~u1, ... ,~ur} ⊆ Zd
p . For all i ∈ [r ], we write ~ui = (ui

1 ... , ui
d). For all l ∈ [d ], we

write Ml = maxj∈[r ] uj
l , and Sl =

∑r
j=1 uj

l . Then

gVDP

(
Γ(Zd

p , S)
)
≥ (d + 1) log(p)− log min

l∈[d ]
Ml

and

gEDP

(
Γ(Zd

p , S)
)
≥ (d + 1) log(p)− log min

l∈[d ]
Sl .

Proof. The idea is the same as in Theorem 4.2. Let l ∈ [d ]. We take V1 = Zl−1
p ×{0, ... , bp2c− 1}×Zd−l

p

and V2 = Zl
p × {b

p
2c, ... , p − 1} × Zd−l−1

p . Then

∂Gin (V1) ⊆ Zl−1
p × {0, ... , Ml − 1} ∪

{
bp2c −Ml , ... , bp2c − 1

}
× Zd−l

p ,

because

vl − ul > Ml mod p

for all u = (u1, ... , ud) ∈ Zl−1
p × {Ml , ... , bp/2c −Ml − 1} × Zd−l

p and all v = (v1, ... , vd) ∈ V2, so that

{u, v} /∈ E . Thus, |∂Gin (V1)| ≤ 2Mlp
d−1. This is true for any l ∈ [d ], so vbw(G ) ≤ 2 minl∈[d ] Mlp

d−1. So
applying Theorem 2.2, we get the result of Theorem 4.4. Similarly, we can show that |e(V1)| ≤ 2Sl for
any l ∈ [d ] and then get the result of Theorem 4.4 for the EDP mode.

Consider the Cayley graph Γ(Zd
p , S) with generating set S = {±s1, ... ,±sr}. For this graph to be

connected, we need to have d linearly independent vectors in the set {s1, ... , sr}, thus in particular r ≥ d .
Moreover, if r = d then Γ(Zd

p , S) admits the grid Gr(p, d) as a spanning subgraph, and applying the
algorithm of [8] gives an optimal gossiping algorithm. So the interesting case is when r > d .
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Theorem 4.5. Let p be a prime, and let d , r ∈ N∗ such that r > d. Let S = {±~u1, ... ,±~ur} ⊆ Zd
p

such that S generates Zd
p . For all i ∈ [r ], we write ~ui = (ui

1, ... , ui
d), and assume that ~ui = λiei for all

i ∈ [d − 1], where ei is the i-th standard vector as above and λi ∈ Zp.

If ud
d = 1, ud

d < ud+1
d < · · · < ur

d , and
⌈
ui+1
d

uid

⌉
≤ 2 p

urd
for all i ∈ {d , ... , r − 1}, then

gVDP(Γ(Zd
p , S)) ≤ (d + 2) log(p) + log(ur

d) + 2r − log(log(p)) + O(1),

gVDP(Γ(Zd
p , S)) ≥ 2 log(p)− log(ur

d)− log(log(ur
d)) + O(1),

and

gEDP(Γ(Zd
p , S)) ≤ (d + 2) log(p) + log(ur

d) + 2r − log(log(p)) + O(1),

gEDP(Γ(Zd
p , S)) ≥ 2 log(p)− log(rur

d)− log(log(rur
d)) + O(1).

We omit the proof of this theorem, which can be found in [6].

5. Conclusion and open problems

We have given an (almost) optimal gossiping algorithm for a class of circulant graphs. Furthermore, we
have shown that we can extend this algorithm to a more general class of Cayley graphs. Finding an optimal
gossiping algorithm for all circulant graphs remains an open problem.

It would also be interesting to look for a general algorithm that performs gossiping for a larger class of
Cayley graphs. This may also involve looking for better lower bounds for Cayley graphs.

Furthermore, there are other graphs whose structure is close to the hypercube for which we don’t know
any optimal gossiping algorithm. This the case for the De Bruijn graph. In [6], a gossiping algorithm for
this graph is given, but it still far from the known lower bound. In general, any graphs that are good
expanders are worth studying for the gossiping problem.

Another interesting problem would be to investigate different kinds of gossiping algorithms. For instance,
random gossiping algorithms have been studied for the complete graph [5], for the hypercube [3], or for
the grid, but to the best of our knowledge, no such results are known for circulant or Cayley graphs.
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n en

temps polinomial.

Abstract (ENG)
In this paper we introduce a polynomial time algorithm that solves both the conju-

gacy decision and search problems in free abelian-by-infinite cyclic groups, where the

inputs are elements in normal form. We do this by adapting the work of Bogopolski–

Martino–Maslakova–Ventura in [1] and Bogopolski–Martino–Ventura in [2], to free

abelian-by-infinite cyclic groups, and in certain cases apply a polynomial time algo-

rithm for the orbit problem over Zn given by Kannan–Lipton in [7].

Keywords: Conjugacy problem,
semidirect product.
MSC (2010): 20F10, 20E06.
Received: September 13, 2014.
Accepted: October 6, 2014.

Acknowledgement
The second author is partially supported

by the O�ce of Naval Research grant

N00014120758, the American Association

for the Advancement of Science, a PSC-

CUNY grant from the CUNY research foun-

dation, as well as the City Tech foundation.

55http://reportsascm.iec.cat Reports@SCM 1 (2014), 55–60; DOI:10.2436/20.2002.02.5.

A polynomial time algorithm for the

conjugacy problem in Z

n
o Z

http://reportsascm.iec.cat


A polynomial time algorithm for the conjugacy problem in Z

n
o Z

1. Introduction

The conjugacy decision problem in a finitely presented group G , is determining if there is a solution to
the equation v = xux�1 where u, v , x 2 G . The decision problem also has the search variant, given u
and v conjugate, find an explicit x that conjugates u to v . The conjugacy decision problem is in general
undecidable [8], whereas the search problem is decidable in every recursively presented group [9].

Due to the rise of applications of group theory to computer science and cryptography, more research has
been directed towards studying the algorithmic complexity of group theoretic algorithms rather than solely
investigating decidability. Other polynomial time algorithms for the conjugacy problem in solvable groups
are due to Vassileva in free solvable groups [13] and Diekert–Miasnikov–Weiß in solvable Baumslag-Solitar
groups [3]. Some very related results can also be seen in the work of Sale [11, 12], in which he shows that
for a special class of the groups studied in this paper, the conjugacy length function is bounded from above
by a linear function. Namely, for any two conjugate elements in these groups, there exists a conjugator of
geodesic length less than a constant multiple of the sum of the geodesic lengths of the elements.

In the following sections we introduce a polynomial time algorithm that solves both the conjugacy
decision and search problems in free abelian-by-infinite cyclic groups, where elements are given in terms
of their normal forms. This family of groups is polycyclic so it is well known that they have a solvable
conjugacy problem. This fact is due originally to Formanek [6] and Remesslennikov [10], who independently
proved that virtually polycyclic groups are conjugacy separable: for any two u, v 2 G that are not conjugate,
there exists a finite homomorphic image in which the images of u and v are not conjugate. Conjugacy
can be solved in such groups by conjugating u by elements of G and checking if the result is v , while
simultaneously enumerating all homomorphisms from G into a finite group and checking if the images of
u and v are conjugate. One of the processes is guaranteed to stop which then provides an answer to the
problem. This algorithm is brute force and clearly may take very long even in simple cases.

We start the paper with a review of free abelian-by-infinite cyclic groups and the twisted conjugacy
problem. We then detail the algorithm due to Bogopolski–Martino–Maslakova–Ventura from [1] and prove
that it, along with the solution to the orbit problem due to Kannan–Lipton [7], solves both the conjugacy
decision and search problems in polynomially many steps with respect to the lengths of the inputs in normal
form. Finally we end with a complexity analysis of the algorithm and discuss how the complexity changes
when inputs are considered in their geodesic forms rather than normal forms.

2. Free abelian-by-infinite cyclic groups

We say that a group G is free abelian-by-cyclic if G fits into a short exact sequence of the form:

1 ! Z

n ! G ! C ! 1,

where C is a cyclic group. If C ' Z, then we say G is free abelian-by-infinite cyclic. In this case, G splits
as Zn

o� Z for some � 2 GLn(Z). Therefore, G has the presentation:

hg1, g2, ... , gn, t | tgi t�1 = �(gi ), [gi , gj ] = 1i,

where 1  i < j  n and where we view the gi as the generators of Zn and t as the generator of Z. As
such, any g 2 G can be written as w1t

k1w2t
k2 · · ·wmt

km where each wi 2 Z

n and ki 2 Z. Applying the
relations of the form tgi t

�1 = �(gi ) multiple times, one can move all the tki over to the right side of the
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word, thus representing each element as wtk where w 2 Z

n and k 2 Z. For any g 2 G we call such a
representative its normal form. Multiplication in normal forms can then be carried out as:

wtk · w 0tk
0
= w�k(w 0)tk+k 0

.

Namely, every time we need to move tk to the right, over a word in Z

n, we can do so at the price of
applying �k . It can additionally be seen (see [4]) that each group element’s normal form is unique.

For the remainder of this paper, we will be working entirely with elements in their normal forms and
as such assume in the following algorithm that elements are given in their normal form. We also define a
length function, | · |, over elements of G where if g =G wtk , then:

|g | = |wtk | = |w |
Z

n + |k |,

where |w |
Z

n is the standard geodesic length of w 2 Z

n.

3. The twisted conjugacy problem

Definition 3.1. Given a finitely presented group G , an autormorphism � 2 Aut(G ), and u, v 2 G we say
u and v are twisted conjugate by � if there exists x 2 G such that

v = xu�(x�1).

If u and v are twisted conjugate by � we write: u ⇠� v .

Notice that the standard conjugacy problem is a special case of the twisted conjugacy problem by taking
� to be the identity.

In [1] Bogopolski–Martino–Maslakova–Ventura introduced an algorithm that relates the conjugacy prob-
lem in free-by-infinite cyclic groups to the twisted conjugacy problem in free groups. Following that work,
Bogopolski–Martino–Ventura [2] adapted the algorithm from [1] to solve the conjugacy problem in a variety
of groups created by extensions. What follows is an adaptation of their algorithm for free abelian-by-cyclic
groups.

4. The algorithm

The following lemma and proof is taken directly from the beginning of section 2 in [1] and adapted to free
abelian-by-infinite cyclic groups.

Lemma 4.1. Let u = wts and v = xtr in Z

n
o� Z be conjugate. Then s = r and there exists e 2 Z such

that �e(w) ⇠�s x in Z

n. Additionally, if �s = �r is the identity, then x = �e(w) for some e 2 Z.

Proof. Let a = bte 2 Z

n
o� Z be such that v = aua�1. Therefore,

xtr = (bte)wts(bte)�1 = btewtst�eb�1 = b�e(w)tsb�1 = b�e(w)�s(b�1)ts .

As such, we have xtr = b�e(w)�s(b�1)ts , which implies s = r and �e(w) ⇠�s x by b.
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Given u and v as above, the lemma shows that there are two cases one must consider to solve the
conjugacy decision and search problems in Z

n-by-Z groups. First, check if s = r . If not, then u and v are
not conjugate. If the exponents are the same, then there are two cases:

• If �s is trivial, we have to decide whether 9e 2 Z such that x = �e(w).

• Otherwise, we have to decide if there exists e such that �e(w) ⇠�s x .

The first case, namely given two vectors w , x 2 Z

n and � 2 GLn(Z) determine if there exists e 2 Z

such that x = �e(w), is known as the orbit problem over Zn. In [7], Kannan–Lipton provide a polynomial
time algorithm that solves the orbit problem over Qn. Since the orbit problem over Zn is a special case of
their work, this algorithm provides a polynomial time solution to the twisted conjugacy problem over Zn in
the case that �s is trivial. If such an e is found satisfying the orbit problem, then we have that v = teut�e .

For the second case, we use the fact from the lemma that 9b 2 Z

n, e 2 Z such that x = b�e(w)�s(b�1).
Before we begin the algorithm, we state [1, Lemma 1.7].

Lemma 4.2. For any group G, � 2 Aut(G ), and u 2 G, u ⇠� �(u).

Proof. �(u) = u�1u�(u). Therefore u is twisted conjugate over � to �(u), by u�1.

As such, �e(w) ⇠�s �e±ks(w) for any k 2 Z. Therefore, if there exists an e that satisfies the equation
�e(w) ⇠�s x , then we can find such an e among {0, 1, ... , |s|� 1}. This is where it is important that we
are in the second case and so, s 6= 0.

We can now proceed with the full algorithm. Due to the fact that x ,w 2 Z

n and � 2 GLn(Z) it
is more convenient to put the equation x = b�e(w)�s(b�1) into additive notation. As such we write
x = b + �e(w)� �s(b). This gives the equation

x � �e(w) = (Idn � �s)b,

where Idn is the n ⇥ n identity matrix. In this way, each e yields a system of linear equations, which we
solve for the vector b. There will be a solution to the conjugacy problem, as long as there is some e for
which the solution b is in Z

n. Moreover, we know that if there is a solution to the conjugacy problem,
such an e must lie in the set {0, 1, ... , |s| � 1}. If there exists such an e, u ⇠ v and bte is a conjugator.
As such, we proceed by solving the system of linear equations given by each of the possible e’s and then
checking if the solution, b, is in Z

n. In the case that Idn � �s is invertible, namely, �s does not have 1 as
an eigenvalue, then we can also write:

b = (Idn � �s)�1(x � �e(w)).

For a complete description of the algorithm in pseudo-code on inputs wts , xtr 2 Z

n
o�Z, see Algorithm

1. We have the algorithm return FALSE if the elements are not conjugate, and a conjugating element if
they are.

5. Complexity analysis

In the algorithm above we have two cases each of which can be dealt with in polynomially many steps with
respect to n and |s|. If s = r 6= 0, we find solutions of an n ⇥ n linear system at most |s| times. On the
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Algorithm 1 Conjugacy Algorithm for Zn
o� Z

if s 6= r then

return FALSE

else if �s is the identity then

Run Kannan-Lipton algorithm.
if Kannan-Lipton returns k then

return tk

else return FALSE

end if

else

e := 0
while e < |s| do

if 9b 2 Z

n such that x � �e(w) = (Idn � �s)b then

return bte

else e := e + 1
end if

end while

return FALSE

end if

other hand, if s = r = 0, we use Kannan–Lipton algorithm, which runs in polynomial time. Therefore, this
algorithm is at most polynomial in terms of n and the lengths of the input words.

It is worth pointing out that unlike many of the algorithms group theorists study, this algorithm takes
as inputs words in their polycyclic normal forms as opposed to in their geodesic form or just in any general
form. This a↵ects the complexity of the algorithm as all forms have di↵erent lengths. It is worth noting
that the geodesic form of a word in a polycyclic group can be logarithmic with respect to the length in
normal form. For instance in the group:

G = Z

2
o� Z = hg1, g2, t | [g1, g2], tg1t�1 = g2

1 g2, tg2t
�1 = g1g2i,

where �(t) =

✓
2 1
1 1

◆
, we have that:

tnabt�n = aF (2n+2)bF (2n+1),

where F (n) is the n-th element of the Fibonacci sequence F = {1, 1, 2, 3, 5, ...}. In this way, normal forms
in G can be exponentially longer than their geodesic forms. As such, collecting words in geodesic form
and then performing the algorithm would take an exponential number of steps with respect to the geodesic
length since the process of collecting involves writing out a word that is exponentially longer than the
original word. On the other hand, in a practical setting, converting words to normal forms is fast (see [5])
and the main complexity involved in the algorithm has to do with the exponent above the generator t after
collection, which is just the sum of the exponents above the t’s in a general word. As such, after collection,
the exponent above t contributes to the length of the word at most what it contributed prior to collection.
In that vein, even though a word may grow in size exponentially after collection, most of the additional
steps are involved in collection rather than in actually solving the conjugacy problem.
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